Reservation of Rights

This Catalog primarily reflects information regarding the Cadet Undergraduate Program for the Class of 2021.

The statements set forth in this catalog are for informational purposes only and may not be construed as the basis of a contract between a cadet and the U.S. Coast Guard Academy. Any conflict between this catalog and the applicable statutes or regulations shall be resolved by reference to language of the statute or regulation only.

The Academy reserves the right to change programs of study, academic requirements, course offerings, regulations, teaching staff, Critical Dates Calendar, and other matters described in the catalog without prior notice, in accordance with established procedures. The U.S. Coast Guard Academy endeavors to maintain the accuracy of all information provided in this catalog. However, it is the responsibility of the cadets to be aware of the current regulations, curriculum, and graduation requirements for their class and chosen major.

Human Relations Statement

The United States Coast Guard Academy is an equal opportunity employer guided by applicable Federal laws and regulations. The Academy is committed to the principles of fair treatment and equal opportunity. We recruit, educate, train and employ personnel based on merit so that each individual can excel and reach his or her maximum potential without regard to gender, race, color, religion, national origin, reprisal, sexual orientation and/or where applicable, age (over 40) and/or physical or mental disability. The Academy is also committed to achieving and maintaining a multicultural environment that values the richness brought by diversity and encourages the full participation of all its members. To this end, we promote diversity and strategies to overcome under-representation, discrimination, and acts of intolerance, thereby creating a positive and productive place in which to learn, work, and live. Furthermore, the Academy leadership fully embraces the Coast Guard’s Core Values of Honor, Respect, and Devotion to Duty.

You, as a cadet and Coast Guard member, are strongly urged to dedicate yourself to these principles of fairness, valuing diversity, and respect to ensure they are fully embraced and carried out in your day-to-day actions.

Information about the U.S. Coast Guard’s Civil Rights Program can be obtained from the Region 1 Zone 2 Civil Rights Directorate, U.S. Coast Guard Academy, 15 Mohegan Avenue, New London, CT 06320-4195.
SUPERINTENDENT’S MESSAGE

At the United States Coast Guard Academy we are about the business of officership. We educate, develop, train, and inspire leaders of character strong in the resolve to be worthy of the traditions of commissioned officers in the United States Coast Guard in service to our country and humanity. The Coast Guard is a military, maritime, and multi-mission service that has a rich and alluring heritage and a mission set that protects those on the sea; protects the nation from threats delivered by the sea; and protects the sea itself.

For over 130 years we have excelled at preparing our Service’s leaders for challenging and rewarding careers in the nation’s oldest continuing seagoing service. Our cadets complete a demanding 200-week program that focuses on development in intellectual, physical, professional, and value domains within the context of the service’s Core Values of Honor, Respect and Devotion to Duty.

Our academic program is among the Nation’s best. As a teaching college, our faculty and staff are committed to maximize engagement with cadets and make themselves available for assistance whenever needed. Approximately 80% of graduates will attend graduate school, fully funded and salaried, at the finest institutions in America.

I hope you will seize the opportunity and begin your own journey of self discovery here at the Coast Guard Academy. We recognize that in doing so you have made the noble decision to serve and be part of something much bigger than yourself. We continually pursue excellence, and I assure you our collective efforts are entirely focused on your success.

Welcome Aboard!

Semper Paratus … Go Bears!

Rear Admiral James E. Rendon, USCG
Superintendent, U. S. Coast Guard Academy
Dean’s Message

On behalf of the Academic Division, welcome to the United States Coast Guard Academy.

The Academy experience is one that is filled with exciting challenges and is focused on the intellectual, physical and professional growth of our future Coast Guard leadership.

The present-day world is a dynamic environment that demands well-developed critical thinking skills, a strong ability to communicate, and a relentless desire to learn. Coast Guard officers possess sharp minds, demonstrate sound leadership competencies, and value the importance of teamwork while living and breathing the Coast Guard Core Values of Honor, Respect, and Devotion to Duty.

The Academy’s core curriculum is firmly based in the arts and sciences with a breadth of technical and professional exposure that serves as the nucleus of each academic major. Rigorous in-depth study in a chosen area is a natural follow-on that provides opportunity for collaborative projects and self-managed intellectual work, frequently directed at analyzing and solving real-world problems. Each academic program is subjected to internal and external oversight that provides valuable feedback for continual improvement within our demanding higher education environment. Our taxpayers and our Service deserve nothing less!

The Faculty at USCGA work very hard in making themselves available to you when you are in need of assistance of any kind. They work alongside other members of your individual development team in providing assistance above and beyond the classrooms and laboratories. In short, we are dedicated to fostering your success and allowing each of you to reach your full potential.

This book contains valuable information about academic programs, support services, graduation standards and interesting curricular and extracurricular opportunities. I hope that you will find it useful and will refer to it often.

Semper Paratus,

Kurt J. Colella, Ph.D., P. E.
Dean of Academics Captain, USCG (retired)
Table of Contents

Reservation of Rights .. ii
Human Relations Statement .. ii
Superintendent’s Message .. iii
Dean’s Message .. iv

PART I — INTRODUCTION .. 1
 Mission of the United States Coast Guard Academy ... 1
 Program Objectives ... 1
 Academy Milestones .. 2
 Institutional Accreditation ... 2
 Professional Accreditation ... 3
 Disclosure of Information .. 3
 Critical Dates Calendar ... 4

PART II — ORGANIZATION AND RESOURCES .. 5
 Board of Trustees .. 5
 Admissions Division .. 6
 Requirements ... 6
 Application .. 6
 Contacting the Admissions Division ... 7
 Academic Division ... 8
 Engineering Department ... 9
 Humanities Department ... 10
 Management Department ... 10
 Mathematics Department ... 11
 Science Department .. 12
 Governance .. 12
 Dean’s Council .. 12
 Faculty Senate .. 12
 Credentials Committee ... 13
 Curriculum Committee ... 13
 Cadet Division .. 14
 Athletics Division .. 15
 Cadet Support Services .. 16
 Academic Support Services ... 16
 Center for Counseling and Development .. 17
 The Command Religious Program ... 17
 Coast Guard Academy Regional Clinic .. 18
 Library .. 18
 Registrar .. 18
 Alumni Association .. 19

PART III — EDUCATION PROGRAMS .. 20
 Academics ... 20
 Philosophy of Education ... 20
 Honor Concept .. 20
 Policies and Procedures ... 21
 Minimum Course Load ... 21
 Acceptance Into a Major ... 21
 Course Substitutions ... 21
 Academic Standing ... 21
 Academic Performance Review .. 21
 Performance Guidelines ... 22
Registration for Courses

Classes and Grading

Academic and Military Recognition

Bachelor of Science Degree

Degree and Graduation Requirements

Validations

Distribution Requirements

Majors Requirements

Summer Academic Term

Applicability

PART IV — PROGRAMS OF STUDY

Core Curriculum

Professional Maritime Studies Program

Health and Physical Education Program

Departmental Programs

Civil Engineering

Electrical Engineering

Mechanical Engineering

Naval Architecture and Marine Engineering

Government

Operations Research and Computer Analysis

Marine and Environmental Sciences

Management

PART V — COURSES

Projected Offerings

PART VI — DIRECTORY
PART I — INTRODUCTION

The United States Coast Guard Academy at New London, Connecticut, is one of the five United States Federal Service Academies. It is supported by the Federal Government and operated within the authority of the Department of Homeland Security. It is a highly respected institution offering a superb undergraduate education. It is the principal source of graduates with technical degrees for the United States Coast Guard officer corps.

MISSION OF THE UNITED STATES COAST GUARD ACADEMY

To graduate young men and women with sound bodies, stout hearts, and alert minds with a liking for the sea and its lore, and with that high sense of honor, loyalty and obedience which goes with trained initiative and leadership: well-grounded in seamanship, the sciences and the amenities, and strong in the resolve to be worthy of the traditions of commissioned officers in the United States Coast Guard in the service of their country and humanity.

PROGRAM OBJECTIVES

The Coast Guard Academy is dedicated to producing officers who meet the needs of the Service. Within this broad perspective lie four primary objectives: (1) to provide, by precept and example, an environment that embraces the Coast Guard Core Values of honor, respect, and devotion to duty; (2) to provide a sound undergraduate education in a field of interest to the Coast Guard, (3) to provide leadership education, and (4) to provide professional training which enables graduates to immediately assume their duties as junior officers.

To ensure that the Academy produces quality graduates who demonstrate the required behaviors and leadership competencies, the faculty and staff of the Coast Guard Academy have endorsed the following set of Shared Learning Outcomes:

Leadership Abilities
Graduates shall be leaders of character who understand and apply sound leadership principles and competencies. This includes the ability to direct, develop, and evaluate diverse groups; to function effectively and ethically as a leader, follower, facilitator or member of a team; and to conduct constructive assessment of self and others;

Personal and Professional Qualities
Graduates shall maintain a professional lifestyle that embraces the Coast Guard Core Values of Honor, Respect and Devotion to Duty, including physical fitness and wellness, and demonstrating the customs, courtesies and social skills befitting members of a maritime military service. Graduates shall also have respect for Coast Guard maritime heritage and an understanding of the roles that the Coast Guard and the nation play in the global environment;

Ability to Acquire, Integrate and Expand Knowledge
Graduates shall have developed the motivation and skills for “lifelong learning.” Graduates shall be able to create a working conceptual framework that lends itself to continued expansion. To accomplish this, graduates shall be able to efficiently access a broad range of information sources, locate and interpret desired data reliably, employ appropriate technology, and integrate the specific in-depth knowledge required of both an academic major and an entry-level professional assignment;

Communication Effectiveness
Graduates shall be able to write clearly, concisely, persuasively, and grammatically; prepare and deliver well-organized and polished oral presentations; read and understand a variety of written materials; listen thoughtfully to oral arguments; respect diverse opinions; and formulate reasoned alternatives and responses;

Critical Thinking Ability
Graduates shall be able to accomplish complex tasks in a broad range of contexts by applying the basic skills of critical analysis, systems thinking, quantitative reasoning, risk management, creative problem solving, and value-based decision-making.
These outcomes were developed by analyzing the intellectual, physical, and professional job demands of Coast Guard officers and by comparing those to the developmental experiences for which the Coast Guard Academy is responsible. Graduates of the Academy earn commissions as Ensigns in the U.S. Coast Guard, thus beginning their service to the nation and humanity in the nation’s oldest continuous seagoing service. The four years that cadets spend at the Coast Guard Academy are the beginning of their professional development as leaders and career Coast Guard Officers.

To understand the degree of success in achieving these outcomes cadets and graduates will periodically participate in outcome assessment activities, such as tests, surveys, interviews, and portfolio development. Outcome assessment cuts across specific disciplines, majors, or divisions and is part of our commitment to continually improve all of our programs. To accomplish our mission to develop “leaders of character,” the Academic, Athletics, and Cadet Divisions work closely together: leadership education takes place in the classroom, in the barracks, and on the athletic fields. Leadership across the curriculum mandates that leadership education is not merely relegated to the core leadership courses but that all faculty and staff address leadership whenever possible.

Academy Milestones

1790 Alexander Hamilton developed fiscal plans and economic policies for the United States. On August 4, 1790, Congress passed the Tariff Act, creating a United States Revenue Cutter Service.

1876 Legislation was passed granting permission to establish a cadet-training program within the U.S. Revenue Cutter Service.

1876 The first home for the “Academy” was established on the Revenue Cutter DOBBIN. Nine cadets were selected by competitive examination.

1902 “Scientiae Cedit Mare” was adopted as the Academy motto.

1915 The Life Saving Service joined the Revenue Cutter Service to form the “U.S. Coast Guard.”

1932 The Academy moved from Fort Trumbull to its present location.

1939 The Academy was accredited by the Engineers’ Council for Professional Development (ECPD) under “General Engineering.”

1940 The Academy was accredited by the Association of American Universities.

1940 The Academy was given authority to grant Bachelor of Science degrees.

1946 The Barque EAGLE, a prize of war, was commissioned into the U.S. Coast Guard.

1952 The Academy was accredited by the New England Association of Schools and Colleges (NEASC).

1973 Electrical, Marine, and Ocean Engineering programs were accredited by ECPD.

1976 Women cadets were first admitted to the Academy.

1978 The Civil Engineering program was accredited by ECPD.

1980 Engineers’ Council for Professional Development (ECPD) renamed the Accreditation Board for Engineering and Technology (ABET).

1996 The Mechanical Engineering program was accredited by ABET.

2005 The Academy and its Management degree program received initial accreditation by AACSB International - the Association to Advance Collegiate Schools of Business.

Institutional Accreditation

The U.S. Coast Guard Academy is accredited by the Commission on Institutions of Higher Education of the New England Association of Schools and Colleges.

Inquiries regarding the status of the U.S. Coast Guard Academy’s accreditation by the New England Association of Schools and Colleges should be directed to Academy administrative staff. Individuals may also contact the Association: New England Association of Schools and Colleges, 3 Burlington Woods Drive, Suite 100, Bedford, MA 01803-4514.
PROFESSIONAL ACCREDITATION

The Naval Architecture and Marine Engineering, Civil Engineering, Electrical Engineering, and Mechanical Engineering majors are accredited by the Engineering Accreditation Commission of ABET, Inc., 111 Market Place, Suite 1050, Baltimore, MD 21202-4012 – telephone: (410) 347-7700.

The Academy and its Management degree program are accredited by AACSB International - the Association to Advance Collegiate Schools of Business.

DISCLOSURE OF INFORMATION

The Privacy Act of 1974 provides to individuals certain safeguards against an invasion of personal privacy. Specific items of information requested by a person about another person are prohibited from disclosure. Cadets and other government employees shall not disclose the home address, home telephone number, number of dependents, withholdings, allotments, and social security number of cadets or Coast Guard employees. However, the name, rank or rate, date of rank, salary, duty status, past, present and future duty station, duty station address, office telephone, source of commission, military and civilian education level and promotion sequence number may be revealed to anyone who submits a Freedom of Information Request.
Critical Dates Calendar

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercessional Period Begins</td>
<td>5-Jun</td>
<td>11-Jun</td>
<td>10-Jun</td>
<td>8-Jun</td>
</tr>
<tr>
<td>4th Class Swearing-In Day</td>
<td>26-Jun</td>
<td>2-Jul</td>
<td>1-Jul</td>
<td>29-Jun</td>
</tr>
<tr>
<td>Intercessional Period Ends</td>
<td>4-Aug</td>
<td>10-Aug</td>
<td>2-Aug</td>
<td>7-Aug</td>
</tr>
<tr>
<td>Summer Program End</td>
<td>12-Aug</td>
<td>18-Aug</td>
<td>17-Aug</td>
<td>15-Aug</td>
</tr>
<tr>
<td>Convocation</td>
<td>17-Aug</td>
<td>23-Aug</td>
<td>22-Aug</td>
<td>20-Aug</td>
</tr>
<tr>
<td>Class Start-Fall Semester</td>
<td>21-Aug</td>
<td>27-Aug</td>
<td>26-Aug</td>
<td>24-Aug</td>
</tr>
<tr>
<td>Labor Day</td>
<td>4-Sep</td>
<td>3-Sep</td>
<td>2-Sep</td>
<td>7-Sep</td>
</tr>
<tr>
<td>Homecoming</td>
<td>20-22 Oct</td>
<td>12-14 Oct</td>
<td>4-6 Oct</td>
<td>16-18 Oct</td>
</tr>
<tr>
<td>Columbus Day</td>
<td>9-Oct</td>
<td>8-Oct</td>
<td>14-Oct</td>
<td>12-Oct</td>
</tr>
<tr>
<td>Veterans’ Day</td>
<td>10-Nov</td>
<td>12-Nov</td>
<td>11-Nov</td>
<td>11-Nov</td>
</tr>
<tr>
<td>Thanksgiving Leave</td>
<td>22-26 Nov</td>
<td>21-25 Nov</td>
<td>27 Nov-1 Dec</td>
<td>25-29 Nov</td>
</tr>
<tr>
<td>Last Class Day-Fall Sem</td>
<td>6-Dec</td>
<td>12-Dec</td>
<td>11-Dec</td>
<td>9-Dec</td>
</tr>
<tr>
<td>Study&Conf Day-Fall Sem</td>
<td>7-Dec</td>
<td>13-Dec</td>
<td>12-Dec</td>
<td>10-Dec</td>
</tr>
<tr>
<td>Exam Period-Fall Sem</td>
<td>8-14 Dec</td>
<td>14-20 Dec</td>
<td>13-19 Dec</td>
<td>11-17 Dec</td>
</tr>
<tr>
<td>Winter Leave</td>
<td>15 Dec-7 Jan</td>
<td>21 Dec-6 Jan</td>
<td>20 Dec-5 Jan</td>
<td>18 Dec-3 Jan</td>
</tr>
<tr>
<td>Final Grades Due-Fall Sem</td>
<td>19-Dec</td>
<td>27-Dec</td>
<td>26-Dec</td>
<td>22-Dec</td>
</tr>
<tr>
<td>Mid-Year Admin Processing</td>
<td>8-11 Jan</td>
<td>7-10 Jan</td>
<td>6-9 Jan</td>
<td>4-7 Jan</td>
</tr>
<tr>
<td>Class Start-Spring Sem</td>
<td>12-Jan</td>
<td>11-Jan</td>
<td>10-Jan</td>
<td>8-Jan</td>
</tr>
<tr>
<td>Martin L. King, Jr. Day</td>
<td>15-Jan</td>
<td>21-Jan</td>
<td>20-Jan</td>
<td>18-Jan</td>
</tr>
<tr>
<td>Presidents’ Day</td>
<td>19-Feb</td>
<td>18-Feb</td>
<td>17-Feb</td>
<td>15-Feb</td>
</tr>
<tr>
<td>Spring Leave</td>
<td>10-18 Mar</td>
<td>9-17 Mar</td>
<td>7-15 Mar</td>
<td>6-14 Mar</td>
</tr>
<tr>
<td>Last Class Day-Spring Sem</td>
<td>2-May</td>
<td>1-May</td>
<td>29-Apr</td>
<td>28-Apr</td>
</tr>
<tr>
<td>Undergrd Resrch Symp Day</td>
<td>3-May</td>
<td>2-May</td>
<td>30-Apr</td>
<td>29-Apr</td>
</tr>
<tr>
<td>Study & Conf Day-Spring Sem</td>
<td>4-May</td>
<td>3-May</td>
<td>1-May</td>
<td>30-Apr</td>
</tr>
<tr>
<td>Exam Period-Spring Sem</td>
<td>5-11 May</td>
<td>4-10 May</td>
<td>2-8 May</td>
<td>1-7 May</td>
</tr>
<tr>
<td>Summer Training Begins</td>
<td>12-May</td>
<td>11-May</td>
<td>9-May</td>
<td>8-May</td>
</tr>
<tr>
<td>Final Grades Due-Spring Sem</td>
<td>15-May</td>
<td>14-May</td>
<td>12-May</td>
<td>11-May</td>
</tr>
<tr>
<td>Graduation</td>
<td>23-May</td>
<td>22-May</td>
<td>20-May</td>
<td>19-May</td>
</tr>
</tbody>
</table>

The above dates are for planning purposes only and are subject to change.
Academy personnel and facilities are organized into the rigorous and supportive learning environment needed by cadets for their intellectual, professional, physical, and values-based development. The Academic Division, Cadet Division, and Athletics Division develop and provide the core programs that define those functions and activities needed to execute the Academy’s mission and achieve the institution’s strategic goals. Coast Guard Headquarters, the Board of Trustees, the Superintendent’s Office, and the Divisions of Admissions, Mission Support (Comptroller, Information Services, Facilities Engineering), and Health Services all collaborate to provide critical direction and support for cadet programs. These organizations and their resources form an Academy community that is dedicated to providing a rich and rewarding learning experience for future Coast Guard Officers.

BOARD OF TRUSTEES

The Board of Trustees has cognizance of all programs at the Coast Guard Academy. The Board provides guidance and advice to the Superintendent and the chain of command up to the Commandant in the following areas:

1. Review and validate the Academy’s vision, mission statements and strategic plan.
2. Provide general oversight and advice on issues associated with the well-being and safety of the faculty, students, and staff.
3. Review, validate, prioritize, and advocate resource needs.
4. Ensure that good management practices are followed.
5. Ensure proper oversight of and participation in Coast Guard Academy institutional, programmatic, and course-level accreditation evaluations.
6. Ensure that the Academy’s academic, professional, and training curricula are consistent with and support the Commandant’s Strategic Guidance for the Coast Guard Academy.
7. Provide general oversight and advice on issues associated with strategy and alignment, as well as providing guidance to and acting as a sounding board for the Superintendent.
8. Make appropriate recommendations on accession management issues.
9. Coordinate development efforts with the Coast Guard Foundation, the Alumni Association, and the Board of Visitors.
10. Advocate for the Academy.
ADMISSIONS DIVISION

The mission of the Admissions Division is to attract and appoint prospective cadets who are suited to develop into future leaders and officers in the United States Coast Guard. The division is responsible for coordinating recruiting, outreach and orientation programs, and evaluating and selecting candidates for appointment to the U.S. Coast Guard Academy.

Requirements

The U.S. Coast Guard Academy offers appointments on the basis of a nationwide merit-based competition. Those who are accepted are distinguished by proven academic accomplishment, skills as an athlete, a record of community service or part-time employment, motivation to embrace leadership development, and an unwavering desire to serve their country and humanity. Applicants must be U.S. citizens between the ages of 17 and 22 years old upon entering the Academy. They must be unmarried with no dependents or financial debt and possess a high school diploma or GED (or will prior to entry). Most successful candidates graduate in the top 15% of their high school class and demonstrate proficiency in both mathematical and applied science fields. Applicants must complete the SAT or ACT (with Writing Test) exam prior to or during January test administration of the year of entry.

Appointments to the U.S. Coast Guard Academy are tendered on a selective basis. Congressional nominations are not required. The only special category is International Cadets. By statutory limitations, the Academy may have a maximum of 36 International Cadets enrolled at any one time and candidates seeking admission as an International Cadet must apply through the Defense Attaché Office of their U.S. Embassy.

Application

Application to the Academy is free, online, and completely secure. Applicants can access the online application directly from the Academy’s website: http://www.uscga.edu/apply. Applicants must submit the online application and essays, official SAT or ACT (with Writing Test) exam scores, an official high school transcript, online letters of recommendation from an English and mathematics instructor, and complete a physical fitness examination. Applicants must also complete a medical exam with the Department of Defense Medical Examination Review Board (DoDMERB) to be tendered a full appointment; conditional appointments will be tendered to qualified applicants who have not completed their medical examination. The online application is available each year in late summer with specific deadlines published on the website.

The application to the Academy consists of three parts. Taken in whole, the completed application allows Admissions personnel to select students who are best suited for appointment to the Coast Guard Academy.

Application Part One

<table>
<thead>
<tr>
<th>Required?</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deadline?</td>
<td>15 October (Early Action One); 15 November (Early Action Two); 1 February (Regular Action) (year of entry)</td>
</tr>
<tr>
<td>Contents?</td>
<td>Online Application and Essays</td>
</tr>
</tbody>
</table>

Application Part Two

<table>
<thead>
<tr>
<th>Required?</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deadline?</td>
<td>15 October (Early Action One); 15 November (Early Action Two); 1 February (Regular Action) (year of entry)</td>
</tr>
<tr>
<td>Contents?</td>
<td>High School Transcript, Standardized Test Scores (SAT or ACT with Writing Test), Instructor Letters of Recommendation, Physical Fitness Examination, College Transcript for post-high school applicants, and Commanding Officer Recommendation for active duty and reserve applicants</td>
</tr>
</tbody>
</table>

Contact information for the individuals providing this information is provided by the applicant in Part One. These individuals receive instructions via e-mail for submitting the requested information to the
Admissions Office either online or through other means. SAT or ACT (with Writing Test) scores must be submitted by the applicant’s high school or received directly from the College Board or ACT.

Application Part Three
- **Required?** Yes
- **Deadline?** 1 June (year of entry) - Applicants must be found medically qualified for admission
- **Contents?** Information on scheduling a medical examination is mailed to competitive applicants

CONTACTING THE ADMISSIONS DIVISION

To contact the Admissions Division use the information below or refer to listings on the website.

U.S. Mail: Director of Admissions
U.S. Coast Guard Academy
31 Mohegan Avenue
New London, CT 06320-8103

Telephone:
- 1-800-883-USCG
- 1-860-444-8503

Web:
- http://www.uscga.edu
- http://www.uscga.edu/admissions
The Academic Division, headed by the Dean of Academics, consists of the Library, Registrar’s Office, Academic Support Services, and the following academic departments of instruction: Engineering, Humanities, Management, Mathematics, and Science. The Division offers eight academic majors – Civil Engineering, Electrical Engineering, Mechanical Engineering, Naval Architecture and Marine Engineering, Government, Management, Operations Research and Computer Analysis, and Marine and Environmental Sciences. Offices and academic departments are staffed through the appointment of permanent and time-limited civilian civilian, permanent military, and rotating military faculty.

The Academic Division is responsible for providing a four-year academic program that leads to a Bachelor of Science degree and a commission as an Ensign in the United States Coast Guard. The curriculum is constantly reviewed to ensure that it meets the needs of the Service; therefore, the pattern and content of the courses described in this catalog may be revised at any time without prior notice.

The mission of the Academic Division is to develop the intellectual abilities and nurture the attitudes and aptitudes that will produce officers who are intellectually curious and have a life-long desire for continuous self-improvement, with a commitment to service and ethical practice. The Division accomplishes this in several ways. It affords challenging classroom and laboratory experiences that promote intellectual growth. It offers a curriculum that fosters the achievement of Coast Guard Academy Shared Learning Outcomes by providing a strong background in science and technology, a sound foundation in the liberal arts, and an in-depth concentration in a major field of study of value to the Coast Guard. It presents a curriculum that positions our students for acceptance into the finest graduate schools, and it provides intellectual resources through partnerships responsive to the Commandant’s direction.
The Department of Engineering provides a nationally recognized high quality engineering education. While designated a department within the Academy organizational structure, it would function as a school of engineering in the civilian education community.

Within the Department, there are four programs or majors, all accredited by the Engineering Accreditation Commission of ABET (http://www.abet.org). Their programs are Civil Engineering, Electrical Engineering, Mechanical Engineering, and Naval Architecture and Marine Engineering. Each of these majors is administered by a section that would function as a department of engineering in a civilian institution.

Graduates of the engineering majors have an outstanding record of accomplishment in graduate school. Approximately half of the engineering graduates are selected for graduate programs fully funded by the Coast Guard. Successful candidates are assigned to various universities and their only duty is to attend school. Others take advantage of tuition assistance and attend graduate programs in off-duty hours while in a professional Coast Guard assignment. Other graduates, who leave the active Coast Guard following completion of their five-year obligation, often go on to respected graduate programs nationwide. All told, over 80% of engineering graduates of the Academy go on to obtain graduate degrees.

The mission of the Department of Engineering is:

1. To provide an excellent undergraduate engineering education, strong in fundamentals, supportive of the Mission of the U.S. Coast Guard Academy, and sufficient in number to adequately serve the needs of the Coast Guard.
2. To maintain a quality curriculum closely reflecting current technologies, and an environment which fosters continuous development of students, faculty, and staff.
3. To contribute as a unique intellectual resource to the Coast Guard and the Department of Homeland Security by involving cadets and faculty in real-time projects when able.
4. To satisfy the Program Educational Objectives for each respective program.

Program Educational Objectives are listed by major later in Part IV – Programs of Study.

Student outcomes of all four programs within the Department of Engineering include producing graduates who have:

1. An ability to apply knowledge of mathematics, science and engineering.
2. An ability to design and conduct experiments, as well as to analyze and interpret data.
3. An ability to design a system, component or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
4. An ability to function on multidisciplinary teams.
5. An ability to identify, formulate, and solve engineering problems.
6. An understanding of professional and ethical responsibility.
7. An ability to communicate effectively.
8. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
9. A recognition of the need for, and an ability to engage in life-long learning.
10. A knowledge of contemporary issues.
11. An ability to use techniques, skills, and modern engineering tools necessary for engineering practice.

Once commissioned in the Service, Department of Engineering graduates go on to assignments in every area of the Coast Guard. Engineers are preferred for filling approximately one third of the jobs in the Coast Guard. There are many positions assigned exclusively to engineers. However, this does not mean that engineering graduates are limited to technical assignments. While engineering careers are the most often selected, many alumni pursue careers in other fields. Notable non-engineering assignments that have been held by Academy engineering graduates include Commandant of the Coast Guard, Superintendent of the Coast Guard Academy, Aide to the President of the U.S., Aide to the Secretary of Transportation, NASA astronauts, and many others. In fact, engineering graduates are eligible for every assignment in the Service.

HUMANITIES DEPARTMENT

The Department of Humanities provides the essential liberal arts foundation of the academic curriculum at the Coast Guard Academy. The core courses offered in the Department enrich the writing, critical thinking, and public speaking skills of all cadets while imbuing them with an appreciation for national and global challenges to governance and an understanding of their unique roles as citizen/officers. The Department sponsors a number of learning opportunities for cadets outside the classroom, including the Washington Intern Program for first class cadets; the Model UN team, which competes internationally; the International Law of Armed Conflict Competition in San Remo, Italy; *id est*, the cadet literary magazine; and the Society for Policy and International Affairs, which travels yearly to New York City and Washington, D. C.

The Department offers a single major in Government. The Government major provides cadets a broad understanding of governmental systems and their cultural, historical, theoretical, and jurisprudential underpinnings. A required concentration in either Politics, Policy, and Law: Security Studies; or International Relations enables future leaders to develop in depth understanding of how cultures, theories, institutions, and political processes influence the evolution of domestic, international, and global peoples, systems, and institutions. A required cognate concentration in the Humanities expands cadets’ understanding of the human condition and human societies. The Department is a member of the American Political Science Association and sponsors cadet membership in Pi Sigma Alpha, the National Political Science Honor Society.

The Government major prepares graduates to serve in almost any career path in the Coast Guard. Government majors are to be found commanding cutters or shore stations, heading policy offices, negotiating treaties on behalf of the U.S. government, leading regulatory projects, and flying aircraft, reflecting the maxim that a liberal undergraduate education recognizes no limits. The Government major provides graduates with an excellent background for postgraduate study in a variety of disciplines.

MANAGEMENT DEPARTMENT

The Department of Management, which functions much like a typical business school at civilian institutions of higher education, is internationally recognized for providing a high-quality business education. It is the smallest business program that is accredited by AACSB International, the premier
accrediting body for collegiate schools of business and accounting.

The mission of the Department of Management is to prepare future commissioned officers of the U.S. Coast Guard to be competent and ethical management professionals. The broad program of study is guided by the emerging needs of the Coast Guard through its Advisory Council comprised of the Coast Guard’s Chief Financial Officer, Chief Information Officer, Chief Human Capital Officer, and other senior managers from the Department of Homeland Security, Coast Guard Headquarters, and higher education. The Management Department further enables Coast Guard management effectiveness through faculty scholarship and consulting.

The Management major is one of the largest at the Academy. Students enrolled in the Management major study a wide range of business disciplines including accounting, finance, economics, management, behavioral/organizational science and leadership, marketing, strategy, human resource management, management of information systems, quantitative methods, operations management, and decision sciences. In addition to learning business competencies, graduates must demonstrate proficiency in leadership, communication, and integration/critical thinking.

The average size of a Management class is under 15 students; this ensures lively discussion and a tailored learning process that is interactive and highly collaborative. All classes in the Management program of study are taught by qualified faculty members. The faculty also serves as high-touch career advisers to their students who they get to know both in and out of the classroom. Graduates of the program earn a Bachelor of Science degree in Management.

After graduation Management alumni can serve as line officers in any operational mission specialty – on ships, in planes, and at shore units. After establishing an operational specialty, Management alumni find themselves particularly well-suited to be stewards and managers of the U.S. Coast Guard’s financial, human, and information resources. The Coast Guard is a global organization with a $10 billion per year budget, a total workforce of over 85,000 people, and extensive interdependent information systems that are changing at the pace of technology. Many Management alumni are selected by the Coast Guard to attend graduate school full-time and fully funded. They have attended some of the most prestigious MBA, accounting, and information systems management programs in the country. Management alumni have an outstanding record of academic achievement at graduate school, and an exemplary record of performance as senior resource managers.

MATHEMATICS DEPARTMENT

The Department of Mathematics is staffed by civilian and military faculty. The dedication and diverse mix of experiences of the faculty add a unique depth and flavor to a cadet’s academic and military experiences at the Coast Guard Academy. The focus is on support of the Academy’s Shared Learning Outcomes, the Operations Research and Computer Analysis (ORCA) major, and the broad technical core curriculum.

The Operations Research and Computer Analysis major provides graduates a background in mathematics, probability, statistics, deterministic and non-deterministic modeling and computer programming and analysis. The primary focus is to enable cadets to conceptualize and describe reality using the tools of mathematics and statistics, analyze possible models and solutions, use appropriate computer technology, apply these skills to specific Coast Guard problems, and effectively communicate solutions. The study of Operations Research and Computer Analysis highlights for cadets the means by which mathematics and computers can be used to analyze complex problems and improve decision-making. Department of Mathematics core and service courses include Foundation for Calculus, Calculus I, Calculus II, Probability and Statistics, Multivariable Calculus, Differential Equations, and Advanced Engineering Mathematics. Major courses, some of which are also incorporated into the curriculum of other departments, include Probability Theory, Mathematical Statistics, Linear Regression, Computer Modeling Languages, Information Systems, Algorithms with Applications, Discrete Mathematics, Linear Algebra, Decision Models, Linear Optimization, Network and Nonlinear Optimization, Intermediate Deterministic Models, Probability Models, Simulation with Risk Analysis, and the cadet capstone courses Operations Analysis Prep and Operations Analysis.
The Science Department consists of three sections: Chemistry, Marine Science, and Physics. It is responsible for the chemistry, physics and oceanography core courses as well as a large array of upper level courses. Faculty and cadets are involved in a wide range of projects that deal with interesting and important environmental issues. These include coastal food chains using isotope measurements, issues related to fisheries management, estuarine dynamics, and application of geospatial technologies to increasing the Coast Guard’s Maritime Domain Awareness. Other activities involve a host of projects relating to environmental forensics, including the detection and identification of petroleum compounds in seawater samples, materials from suspected arson sites, and geochemical samples.

The Science Department offers a major in Marine and Environmental Sciences which provides a multidisciplinary and technical education in marine and environmental sciences and is closely aligned with Coast Guard missions, including Homeland Security, Prevention and Response (e.g., marine environmental protection, oil and hazardous materials spill cleanup), Port Security, Fisheries Law Enforcement and Management, Search and Rescue, Ice Operations, and Aviation. The curriculum stresses understanding of the complex interactions between humans and their environment, especially the oceans, and the interplay between the scientific, regulatory and social aspects of marine resource management. Students may concentrate their course work in the biological, chemical, or physical aspects of the marine environment.

Resources used by students in the Marine and Environmental Sciences program include a 30-foot research vessel, chemistry and biology labs equipped with state-of-the-art analytical instrumentation, and a computer laboratory. In addition to coursework, there are opportunities for independent research and summer internships, which allow students to be involved directly with Coast Guard operations or make extended visits to research labs where work related to the major is carried out. Extensive use is made of the nearby Thames River estuary for field studies and experiments.

The department maintains an astronomical observatory in nearby Stonington. Although it is not a required part of the major, many students in this and other majors take the astronomy course as an elective.

Governance

Dean’s Council
The Dean’s Council, consisting of Department Heads of all programs and courses worthy of credit, support areas (Academic Resources, Registrar, Library), the President of the Faculty Senate, and the President of the Faculty Union, shapes the Academic Division’s strategic thinking and planning, especially in curricular areas. The Council also serves as the faculty’s formal agent for academic program evaluation, review, development and assessment; faculty recruitment and professional development; graduation standards; and the standards and policies for the core, admission into the major, grading, academic honors, probation and suspension. The Council may address extraordinary academic problems and circumstances of individual students.

Faculty Senate
The Faculty Senate represents the Coast Guard Academy military and civilian faculty and aspires to inform the Superintendent of faculty opinion on matters of mutual concern. The Faculty Senate addresses matters
relating to the common curriculum, academic standards, faculty professional development, criteria and methodologies for evaluating teaching effectiveness, grading policies, academic advising, program evaluation, instructional technology, innovative teaching methods, and other issues for which the faculty are a primary source of professional expertise. The administration attempts to keep the Faculty Senate informed of pending academic issues so that the Faculty Senate may serve as a conduit for this information between and among the faculty and the Academy administration.

Credentials Committee

The Credentials Committee is a source of peer review and evaluation of academic faculty qualifications and scholarly accomplishments. The purpose of the Committee is to ensure that equitable standards are applied to all faculty members and that proper recognition is accorded to faculty scholarship. The committee consists of the most senior faculty and serves in an advisory capacity to the Dean of Academics.

Curriculum Committee

The Curriculum Committee’s primary responsibility is to provide guidance on curricular issues to the Dean of Academics and the Dean’s Council. The Committee reviews and comments on proposed changes to courses and also discusses and promotes the curricular philosophy and structure of the Coast Guard Academy.
The Cadet Division is responsible for directing, supporting, and managing the military and professional programs for the Corps of Cadets. The Cadet Division develops ethical leaders and lifelong learners while producing professional career military officers for the U.S. Coast Guard. Fundamental to their development, and ingrained in all Cadet Division activities, are the Coast Guard Core Values of Honor, Respect, and Devotion to Duty.

The Cadet Division is organized into four branches. The Commandant of Cadets is an active duty Coast Guard Captain (O-6) who fulfills the duties of the Cadet Division Chief, somewhat equivalent to a “Dean of Students.” The Commandant directly oversees a full-time staff of approximately 100 people. The Commandant of Cadets is located in Chase Hall: the four annex, 450 room building that serves as the home for the Corps of Cadets.

The Cadet Branch, also located in Chase Hall, is responsible for the day to day administration of the corps including discipline and the general health and well being of the Corps of Cadets. Administered within the Cadet Branch are the Cadet Regiment, Cadet Company Officers and Chiefs, Cadet Musical and Vocal Activities, and the Cadet Social Development Program.

The Cadet Training Branch is responsible for the entire spectrum of training delivered to the Corps of Cadets across the 200 week course of instruction. Administered within the Training Branch are: Cadet Training, Career Development, Cadet/OCS Administration, and Weapons Training. It also serves as liaison to the fleet and to Coast Guard Cutter EAGLE, the Academy’s sail training vessel.

The Waterfront, Seamanship and Sailing Branch is located at the Academy waterfront on the Thames River. It is comprised of the Sail Training Section and the Waterfront Section and is responsible for, or the support of, all Academy conducted sail and seamanship training for the Corps of Cadets, and the coaching/management of the competitive inter-collegiate and offshore sailing program. The branch maintains over 130 boats of eight different classes that are used in the various programs, sports, and courses. It also identifies and prioritizes work projects that affect the piers and buildings along the waterfront.

The Professional Maritime Studies Branch is located in Yeaton Hall. A four-year Navigation and Nautical Science curriculum is delivered by the Branch culminating with the issuance of a 100-Ton Merchant Mariner Master’s License at graduation for those cadets that meet all Coast Guard requirements. In addition to providing theory and application in the classroom, the material for these courses are reinforced with experiential learning in shipboard simulators and at the waterfront. The Professional Maritime Studies Branch serves as the program manager for the Ship Control and Navigation Training System (SCANTS), which includes two full mission bridge simulators and a multitude of advanced part-task simulators. The Branch is the CGA liaison to the Office of Cutter Forces (CG-751), Coast Guard Personnel Command (OPM-2), and the Coast Guard National Maritime Center.
Many factors contribute to the development of leaders of character. In addition to the Coast Guard Academy’s emphasis on the intellectual and professional development of cadets, there is a high value placed upon each cadet’s physical development and wellness. This is accomplished through classes in the Health and Physical Education Department, athletics competition during the daily sports period, and an institutional commitment to physical fitness.

The physical education program emphasizes professional competencies and lifetime fitness and wellness. The intercollegiate sports program is one of the broadest in NCAA Division III athletics, with eleven men’s sports, nine women’s sports, and three coeducational varsity sports. The intercompany and club sports program is very active and cadet driven. All cadets are required to participate in these activities, which provide multiple opportunities for personal and professional development. Oversight for the Athletic Division is provided by the Director of Athletics.
To foster the welfare and success of cadets, numerous services are provided by way of academic assistance, personal and professional counseling, religious activities, and administrative support.

Academic Support Services

The following programs are provided under Academic Support Services:

- **Academic Advising Program** prepares cadets to make sound decisions and to set their own priorities. Fourth class cadets must initially meet with their academic advisors every two weeks. As cadets progress through their four years at the USCGA, however, they take increasing responsibility for their own academic success. Advisors provide assistance to all cadets and help them develop study skills, set priorities, and obtain information on career opportunities. Additionally, academic advisors approve cadets’ course registrations, class schedule changes, and course adds and drops. Even though a faculty member may be assigned to a cadet as an advisor, cadets are free to consult with any faculty member. The faculty and staff are deeply concerned for the welfare and success of each cadet, and they will generously give their time to any cadet.

- **Hewitt Writing and Reading Center (HWRC)** is located on the second deck of the library in Waesche Hall. Tutors in the HWRC provide assistance to cadets in all class years and majors. The HWRC is open Sunday through Thursday evenings and during most business hours. Cadets can make an appointment and upload work through an online scheduling program. Faculty and civilians who are professional writers and educators staff the HWRC. Established in 1987, the HWRC operates, in part, from funds provided by the John and Erna Hewitt Endowment.

- **Cadet Academic Advisory Board (CAAB)** provides a direct channel of communication between the Corps of Cadets and the Dean of Academics. The CAAB operates under the auspices of a faculty advisor who is assisted by the Charlie Company Academics Officer - the chair of the CAAB. Depending upon the circumstances, the chair of the CAAB may also be invited to participate in meetings held by the Dean’s Council.

- **Cadet Academic Assistance Program (CAAP)** provides discipline-specific, voluntary evening workshops and tutoring to help cadets with course concepts, classroom assignments and test preparation.

- **Cadet Academic Support Program (CASP)** provides mandatory instruction in selected subject areas to designated 4/c cadets who have been deemed to potentially benefit from directed, hands-on, supplemental academic work.
Early Warning System provides information to faculty and academic advisors concerning the academic performance of fourth class cadets so that intervention strategies can be promptly implemented to help cadets succeed at the Academy.

Fundamentals of Mathematics and Communication (FMCP) Program supports fourth class cadets whose SWAB Summer placement scores indicate they would benefit from assistance in the fundamentals of mathematics, English, and reading. Support includes placement in foundational courses in the fall semester and two classes during the summer before their third class year.

Fourth Class (4/c) Course Coordinators Committee addresses topics that support cadets in their adjustment to Academy life. The Committee also develops the 4/c exam schedule.

Honors Program provides opportunities for cadets who wish to enrich their academic experiences. Included in the program are Alpha Lambda Delta, the national honor society for first-year college students; honors classes; and the Honors Colloquium, which prepares cadets to compete for postgraduate fellowships and scholarships such as the Rhodes, Fulbright, and Truman.

Instructional Support Program provides a variety of services to help cadets use computers, various software applications, equipment, and information technology more productively. Services include training and access to a multimedia center which allows cadets to create high-quality programs and presentations.

International Cadet Council (ICC) engages in activities in support of its cultural, social and educational mission. The most important activities include an annual visit to the United Nations and/or Pentagon, the Royal Military College of Canada, and the U.S. Naval War College. Cadets also participate in the annual United States Naval Academy (USNA) International Ball. Through identification of host families and assessment of cadets’ interests and language skills, the coordinator of the ICC facilitates the assimilation of international cadets into the Corps of Cadets and introduces them to many aspects related to day-to-day living in the U.S.

Peer Tutor Program is comprised of 3/c through 1/c cadets who have performed well academically and have successfully completed training and certification. A list of peer tutors and the courses they support is posted on the Corps of Cadets Regimental Staff home page and on the peer tutor site located under Academic Resources on the Academic Division section of the portal.

Center for Counseling and Development
Counselors at the center are licensed psychologists. They are readily available to meet with any student at the Academy experiencing personal, educational, vocational, military, or leadership issues.

Personal counseling sessions may address a variety of topics including: stress management, interpersonal relationships, depression, anxiety, family problems, eating concerns, sexual assault, loneliness, self-esteem, motivation, academic difficulties, study skills, and career choices. Structured group workshops are held as requested on such topics as relaxation, stress management, healthy eating, sexual assault prevention, test anxiety, and study skills.

Psychological testing and evaluation are also available to help identify personality traits, learning and attentional problems, and vocational interests.

Counseling services are strictly confidential and do not become part of a cadet’s medical, academic, or military record.

The Cadet Command Religious Program
At the Academy, the Superintendent is responsible for the well-being of all cadets, faculty, and staff. This includes their moral, physical, and spiritual welfare. The Superintendent provides for spiritual welfare through the Command Religious Program (CRP). The CRP provides for the free exercise of all religious faiths represented in the Command and managed by assigned CGA chaplains.

Chaplains provide a robust ministry to cadets, faculty, and staff. They facilitate the religious needs of all and provide liaison to civilian religious leaders, communities, organizations, and agencies. They care for all regardless of faith background or no faith background and offer complete confidentiality. Chaplains also
advise leadership on issues of ethical and spiritual wellness and morale. At the Academy, chaplains provide a wide range of religious services on traditional worship days during the weekends, on Wednesday evenings during SWAB summer and during the Academic Year, as well as religious education and interfaith dialogue when the Corps of Cadets is aboard.

Coast Guard Academy Regional Clinic

The CG Academy Regional Clinic is the 2nd largest clinic in the Coast Guard. The Clinic includes an Outpatient Department, Dental Clinic, Pharmacy, Radiology, Physical Therapy, moderate complexity Lab, Physical Exam Department, Optometry, Psychiatry, and an Ambulatory Care Unit (ACU) for overnight stays. The Clinic provides routine care for illness and injury to Academy cadets and active duty, as well as several CG bases in the region. A Duty Crew is available 24 hours a day, to include a medical officer and dental officer on call. The professional staff consists of U.S. Public Health Service officers detailed to the Coast Guard, Coast Guard active duty personnel, and civilian contractors. The staff includes physicians with board certifications in family medicine, emergency medicine, preventive medicine and psychiatry. Also on staff are board-certified physician assistants, pharmacist, doctoral level physical therapist, optometrist, and registered nurses. The dental clinic staff consists of three dental officers, two dental hygienists, and dental technicians. The Clinic has the capability to perform routine laboratory tests and x-rays within our facility. Prescribed medication is provided at an onsite pharmacy.

For specialty care, cadets are referred to civilian providers, and the Coast Guard pays for all necessary medical and dental care for you through the military health insurance system known as TRICARE. All specialties are represented nearby at Lawrence & Memorial Hospital in New London and Backus Hospital in Norwich. For certain subspecialty treatment other facilities can be utilized, to include University of Connecticut Health, Yale-New Haven Hospital, and Walter Reed National Military Medical Center.

LIBRARY

The Library provides the resources, spaces, and services for academic success and to encourage lifelong learning.

Library staff are available until 2200 five days a week to help with research, finding resources, and much more. Librarians collaborate with faculty to integrate information literacy skills into the curriculum.

Access is provided to over 350,000 books and e-books and 42,000 full text journals. Online resources, including subscriptions to over 200 academic databases, are available anywhere on-campus and off-campus. Items from other libraries can be requested through the interlibrary loan service.

Materials related to the history of the Coast Guard are collected and preserved to support the Academy’s educational programs and to provide cadets with a connection to the traditions of their service.

A wide variety of spaces are available in the Library for individual and group learning, including large tables, collaboration workstations, study rooms, small group tables, and individual carrels for quiet study.

REGISTRAR

The Registrar is responsible for the development of the master schedule of courses for each semester, the enrollment of cadets in classes and the generation of all academic reports which relate to cadet academic records. The Registrar is also responsible for the compilation, evaluation, safe retention, and appropriate use of cadet academic records, the preparation and issuance of transcripts, and certification of selected data from the records.

Additional responsibilities of the Registrar publishing a Catalog of Courses and to maintain an electronic
version that is accessible via the Internet. It lists courses of study offered for that academic year and each course’s description, credit value, format and projected offering. It also includes the appropriate policies, procedures and other information deemed appropriate by the Dean and the Registrar.

ALUMNI ASSOCIATION

The mission of The Alumni Association is to provide services to, and promote fellowship among, the Alumni of the Coast Guard Academy. The Association raises funds to provide “margins of excellence” support to the Corps of Cadets, the Academy, and the Coast Guard in order to preserve the traditions and enhance the reputation of the Coast Guard Academy.

CONTACTING THE ALUMNI ASSOCIATION

To contact the Alumni Association use the information below or refer to listings on the website.
U.S. Mail: Alumni Association
U.S. Coast Guard Academy
47 Mohegan Avenue
New London, CT 06320
Telephone: 1-(860) 442-2683
Web: www.cgaalumni.org
PART III — EDUCATION PROGRAMS

Academic programs leading to a Bachelor of Science Degree are designed to provide cadets with opportunities to major in one of eight disciplines that combine rigorous academic work and teamwork with leadership experiences that are relevant to a Coast Guard career and possible postgraduate work. The majors supplement a solid core academic program in engineering, science, mathematics, management, and the humanities, combined with unique curricula requirements in health and physical education and nautical science.

ACADEMICS

Cadet academic work is guided by an historically proven philosophy; carefully selected objectives; endorsed Shared Learning Outcomes; and multifaceted academic, training and leadership experiences, leading to an opportunity for a successful career in the Coast Guard.

PHILOSOPHY OF EDUCATION

With a foundation in science, engineering, and math as well as the liberal arts, the Coast Guard Academy provides a challenging outcomes-oriented curriculum focused on active student learning. Our goal is to produce successful Coast Guard officers and to engender an appreciation and habit for lifelong learning. A focus on teamwork, leadership, commitment to service, and ethical practice informs the development of the Academy’s curriculum.

The Coast Guard Academy is committed to the idea of a core curriculum, a common academic experience that provides a broad intellectual perspective. The breadth of a core curriculum encourages awareness of discipline interdependence and the limits of individual specialties. The Coast Guard Academy also believes that majoring in a specific discipline, one that has relevance to current and future Coast Guard missions, is a critical component of the academic program. Specialization encourages intellectual rigor and sophistication.

The framework and heritage for the educational program is a military tradition of leadership and excellence and a commitment to continuous quality improvement. No single teaching method or forum is given precedence. The educational experience at the Coast Guard Academy focuses on critical inquiry. Academic work is collaborative, a joint effort of faculty and students, experiential, interactive, and exciting.

Although we cannot know the future, we prepare students with a curriculum steeped in global history, as well as the history and tradition of the service. Our challenge is to prepare cadets to take their place in a complex, changing, and shrinking global community in a creative manner that enhances the ability of the Coast Guard to fulfill its obligation to the nation.

HONOR CONCEPT

Cadets are expected to conduct themselves in accordance with an Honor Concept, which requires that “Cadets neither lie, cheat, steal, nor attempt to deceive.” Each individual must integrate this concept into his or her way of life so that it becomes the foundation on which to base interactions with all persons, both in the Coast Guard and in society in general.

The Honor Concept establishes an atmosphere of mutual trust and integrity within both the Corps of Cadets and the Coast Guard Officer Corps. It is essential that proper relationships among Coast Guard personnel are established at the earliest point in time, and for this reason, the Corps of Cadets must be guided by the Concept:

“CADETS REVERE HONOR”

The Honor Concept is so fundamental to the qualifications of an individual aspiring to be an officer in the Coast Guard that a failure to adhere to its tenets is considered to be a major deficiency in a person’s suitability for commissioning. For this reason, breaches of the Honor Concept are considered to be serious offenses that normally result in disenrollment from the Academy.
POLICIES AND PROCEDURES

Smooth operation of academic activities is facilitated by the establishment of critical policies, procedures, and standards that provide for a smooth and coherent administration of the cadet academic environment.

MINIMUM COURSE LOAD

All cadets are required to register for a minimum of fifteen credits (not including any HPE requirements) during each fall and spring semester. Cadets who are offered extended opportunity may register for a reduced course load (less than fifteen semester hours) as directed by the Dean of Academics.

ACCEPTANCE INTO A MAJOR

Selecting a major is critical for academic success at the Academy.

Fourth Class Cadets are assigned a Fourth Class academic advisor whose role is to assist them in becoming successful academic learners. Departmental presentations regarding the content of each major and resulting career opportunities are made to cadets in the spring semester of their 4/c year. Cadets then select a major and work with an academic advisor to help them prepare a plan of study and to register for 3/c courses.

Third Class Cadets must apply for and be formally accepted into a major before the start of their 2/c academic year. The common criterion for acceptance into any of the majors is the attainment of a 2.00 average in the set of courses identified as prerequisites for each major. In addition, some majors may demand minimum acceptable grades in certain courses or satisfactory completion of qualifying projects or examinations. Cadets who fail to gain departmental acceptance into their chosen academic major may be granted provisional acceptance by the Dean or Department Head, with a specific plan for meeting the academic requirements of the major. A cadet who ultimately fails to gain acceptance to any academic major will be disenrolled.

COURSE SUBSTITUTIONS

Department Heads, in consultation with their faculty, may accept substitutions for required courses for acceptance into their major, if, in their judgment, the alternatives provide evidence of ability to succeed in the major. When a cadet is accepted into a major without having satisfied the prerequisites or their authorized substitutions, the Department Head shall notify the Dean and Registrar in writing of the conditions waived and the rationale for the acceptance.

Course substitutions for major-specific course requirements may be made only when authorized for a specific major or when specifically approved by the Department Head. One course may not be used to satisfy two separate course requirements.

ACADEMIC STANDING

Cadets are expected to make normal progress toward meeting the requirements for graduation in four years. The performance guidelines described below are designed to identify cadets who are not making the required minimal progress and to help them in obtaining the prompt assistance of their academic advisors and other members of the faculty and staff.

ACADEMIC PERFORMANCE REVIEW

As part of the normal advising process, the academic record of every cadet is reviewed by his or her academic advisor at the end of each semester to assess performance and identify potential problems. At the end of each semester, the Director of Academic Advising applies certain criteria to cadet academic records and refers cadets who are having difficulty to the Academic Review Board (ARB). Academic Department Heads also review the files and make further recommendations when deemed appropriate. The Dean of Academics chairs the ARB which also consists of the Director of Academic Resources and representatives from the Registrar’s Office, the Office of Inclusion and Diversity, Admissions, Athletics, and the Commandant of Cadets. If the Dean believes that a cadet is in a position from which recovery is not possible, he or she will be referred to the Superintendent with a recommendation for disenrollment or
extension. If a cadet is disenrolled and wishes to appeal the Superintendent's decision, the cadet must prepare and submit, via the chain of command, a formal request in accordance with the Regulations for the Corps of Cadets.

Performance Guidelines

1. Cadets are normally placed on academic probation at the end of a semester if they meet any of the following criteria:
 a. Term Grade Point Average (TGPA) of less than 2.00
 b. Cumulative Grade Point Average (CGPA) of less than 2.00
 c. Grade Point average in required upper division courses in the major of less than 2.00
 d. Receives two Fs in one semester or a total of 3 Fs accumulated overall
 e. Cadets may also be placed on academic probation by the Dean of Academics in consultation with the Academic Review Board, Academic Advisors and Department Heads for other reasons.

2. Any 4/c cadet who receives three Fs in the fall semester or four Fs for the year will be referred to the Superintendent with a recommendation for disenrollment.

3. Any cadet (other than 4/c) who accumulates a total of four or more Fs will be referred to the Superintendent with a recommendation for disenrollment.

Good Standing: A cadet whose academic performance indicates that he or she will fulfill all of the graduation requirements on schedule is said to be in “Good Standing.” This is ascertained at the end of each semester through the aforementioned Academic Performance Review process that involves the Dean of Academics, Academic Review Board, or GOLD Advisory team (the Guide for Officer Leadership Development-GOLD Team, consists of the cadet’s Academic Advisor, Company Officer/Chief, and Coach or physical education representative). A cadet found to not be in Good Standing is subject to probation (see below) or restrictions of eligibility for all extracurricular activities (e.g. sports, clubs, vocal and musical activities, band, etc.). These restrictions are subject to the approval by the Dean of Academics in coordination with the Academic Review Board, Academic Advisors and Department Heads for other reasons.

Academic Probation: A cadet who is placed on Academic Probation is subject to restrictions imposed by the Dean of Academics, the Commandant of Cadets and the Director of Athletics. These will include, but are not necessarily limited to, a schedule of mandatory consultations with the academic advisor. Each individual case will be reviewed to determine if restrictions should be placed on participation in sports or extracurricular activities. Academic Probationary status normally continues until graduation. However, a cadet on Academic Probation who earns a TGPA of 2.50 or greater for one semester or a 2.00 or greater for two successive semesters (not including the Summer Term) may petition the Dean of Academics to be removed from academic probationary status provided that their cumulative and major GPAs are both 2.00 or greater. Additional details on procedures for petitioning for removal from Academic Probation are found in the Regulations for the Corps of Cadets.

Extended Opportunity: When exceptional circumstances exist, the Superintendent may elect to offer a cadet an opportunity to extend beyond the customary four-year course of study in lieu of disenrollment. Such cadets are normally registered for reduced course loads as directed by the Dean of Academics. Under no circumstances, however, may a cadet carry less than 12 credits without the express permission of the Dean of Academics. Cadets on extended opportunity are automatically placed on Academic Probation and are reviewed by the ARB each semester that they remain at the Academy.

Disenrollment: A cadet who is disenrolled from the Academy is separated permanently, unless he or she subsequently applies and is accepted for readmission. In the case of readmission with or without advanced standing, all courses taken previously are included in computations of the cumulative grade point average and “upper division” grade point average. For the purpose of determining eligibility for Academic Probation or disenrollment, however, any Fs received prior to the readmission are excluded. If a cadet is disenrolled and wishes to appeal the Superintendent’s decision, the cadet must prepare and submit, via the chain of command, a formal request in accordance with the Regulations for the Corps of Cadets.
REGISTRATION FOR COURSES

During the spring semester cadets select the courses they wish to complete during the next academic year. Course offerings and specific instructions are distributed in advance by the Registrar’s office. Registration is initially completed by the Registrar. Cadets, working with their academic advisor, may modify their schedule during a designated Add/Drop period.

The Registrar will administer registration of 4/c cadets for fall and spring semester courses. Individual course assignments are made based on the following: major preferences, Advanced Placement test results, mathematics and English placement testing completed during the summer, and departmental evaluation of academic work previously completed at other colleges and universities.

Honors Courses: Cadets desiring to take an honors-level course should contact the Department Head for further information.

Directed Studies Courses: Cadets desiring to pursue study in an area beyond available courses may select a departmental Directed Studies course. These may be substituted for any major requirement with the approval of the applicable Department Head. The Registrar must be informed in writing of all authorized substitutions.

Service Academy Exchange Program (SAEP): The Coast Guard Academy has a semester-long exchange program with the U.S. Air Force Academy at Colorado Springs, the U.S. Military Academy at West Point, and the U.S. Naval Academy at Annapolis. Cadets selected for this program attend the sister academy during the fall of their 2/c year. Academic grades received at sister service academies transfer to USCGA and are included in the cumulative GPA. Cadets on exchange with other service academies may use a course taken during their exchange semester to meet their 1/c elective requirement provided it is of similar length/credit hours and they had not previously taken the course at USCGA. Cadets may take CGA required HPE courses while on exchange only if the course description matches closely. Cadets may not take 4303, Personal Defense II: Maritime Law Enforcement Techniques, while on exchange. Cadets going on exchange should discuss their HPE schedule with their advisor and the Registrar prior to departure.

Connecticut College Exchange Program: Full-time students at Connecticut College and the U.S. Coast Guard Academy may enroll in and receive credit for courses completed at the other institution. To qualify for this program, cadets must have: (1) valid academic reason for taking a course that is not available at the Academy and (2) approval of their academic advisor and the Dean of Academics. Enrollment in this program is normally limited to 1/c cadets who have demonstrated strong academic achievement. This is a single course exchange program. Enrollment is limited to a single course per student per semester.

Academic Overloads: Those 3/c, 2/c, or 1/c cadets in good academic standing may petition their Department Head to overload to carry more than nineteen credits (not including HPE credits). To petition, cadets must submit a memo to the Department Head via their Academic Advisor. If approved, a copy of the memo is sent to the Registrar. Cadets on Academic Probation or Extended Opportunity wishing to overload or cadets requiring an overload to meet graduation requirements must obtain approval by the Dean. These cadets must route a memo requesting the overload to the Dean via the Academic Advisor and Department Head. If the Dean approves the overload, action copies are sent to the Registrar and the Director of Academic Advising. All overload memos must be submitted prior to the beginning of the semester for which the overload will take place.

Credit Hour Definition: One hour of classroom or direct faculty instruction and a minimum of two hours of out of class student work each week for approximately fifteen weeks for one semester.

CLASSES AND GRADING

Course Completion: Cadets who withdraw from an overload course or resign prior to 1600 hours on Study and Conference Day will be assigned a “W” for the dropped course or for all courses in the event of a resignation prior to the beginning of final exams. Cadets must complete the published course requirements, including scheduled final exams, for all remaining courses.

Class Attendance: Section lists containing the names of cadets officially assigned to the courses and sections are distributed to the faculty at the beginning of each semester via the Registrar’s web site. Cadets are required to attend the specific lectures, laboratories, tests and review sessions to which they have been
assigned. Cadets must inform instructors in advance of any authorized absences.

Grading System: The unit of credit is the semester hour which is normally defined as one hour of classroom or direct faculty instruction and a minimum of two hours of out of class student work each week for one semester. One semester hour equals 50 minutes of lecture or 150 minutes of laboratory per week. The faculty member assigned to each course/section is responsible for evaluation of student course work and ultimately for accurate grade assignment and timely submission.

The following grades may be assigned as appropriate:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Quality Points</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>4.00</td>
<td>Honors Quality</td>
</tr>
<tr>
<td>A</td>
<td>4.00</td>
<td>Excellent Quality</td>
</tr>
<tr>
<td>A-</td>
<td>3.70</td>
<td>Extremely Good Quality</td>
</tr>
<tr>
<td>B+</td>
<td>3.30</td>
<td>Very Good Quality</td>
</tr>
<tr>
<td>B</td>
<td>3.00</td>
<td>Good Quality</td>
</tr>
<tr>
<td>B-</td>
<td>2.70</td>
<td>Highly Satisfactory Quality</td>
</tr>
<tr>
<td>C+</td>
<td>2.30</td>
<td>Very Satisfactory Quality</td>
</tr>
<tr>
<td>C</td>
<td>2.00</td>
<td>Satisfactory Quality</td>
</tr>
<tr>
<td>C-</td>
<td>1.70</td>
<td>Barely Satisfactory Quality</td>
</tr>
<tr>
<td>D</td>
<td>1.00</td>
<td>Barely Passing</td>
</tr>
<tr>
<td>F</td>
<td>0.00</td>
<td>Failure of Course</td>
</tr>
<tr>
<td>I</td>
<td>0.00</td>
<td>Incomplete</td>
</tr>
<tr>
<td>W</td>
<td>0.00</td>
<td>Withdrawal from Course</td>
</tr>
<tr>
<td>Z</td>
<td>0.00</td>
<td>Audit of Course</td>
</tr>
<tr>
<td>V</td>
<td>0.00</td>
<td>Validation Credit</td>
</tr>
<tr>
<td>S</td>
<td>0.00</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>U</td>
<td>0.00</td>
<td>Unsatisfactory</td>
</tr>
</tbody>
</table>

Academic Averages: All courses taken at the Coast Guard Academy at any time for academic credit are counted toward the term (TGPA) and cumulative grade point averages (CGPA). Each average is determined by dividing the term or cumulative quality point total by the number of term or cumulative semester hours. Quality point totals are derived by multiplying the credit hours assigned to each course by the number of quality points associated with the grade assigned by the instructor. Courses validated or transferred from another institution are listed on the transcript, but they are not included in computations of grade point averages.

ACADEMIC AND MILITARY RECOGNITION

Several honors have been established to recognize academic and military excellence within the Corps.

The **Board of Trustees List** recognizes cadets with superior performance in all three areas of the Academy: military, physical, and academic. Cadets making this list are recognized through a ceremony hosted by the Board of Trustees members.

The **Superintendent’s List** recognizes cadets named to both the Dean’s List and the Commandant of Cadets List.

The **Dean’s List** identifies cadets who achieve at least a 3.15 TGPA while taking at least a normal course load of fifteen credit hours (not including HPE credits) and have no course grade less than a C in any course weighted more than one credit and no failing grade in any course.

Cadets who earn a minimum Military Precedence Index as prescribed by the Commandant of Cadets may qualify for the **Commandant of Cadets List**. Final listings will be based on Company Officer recommendations, and no more than 25% of each class will be named to this list. Cadets are not eligible if they are found in violation of a Class I offense of Cadet Regulations adjudicated during the term or receive a mark of less than 4 on any element of the cadet evaluation.

The **Military Precedence Average** (MPA) determines the military precedence within the class and the order in which a cadet’s name will be placed on the Active Duty Promotion List in the Coast Guard Register of Officers after commissioning. The MPA is calculated using the cadet’s Cumulative Grade Point Average (CGPA), Cumulative Military Precedence Index (CMPI), and the Cumulative Physical De-
velopment Competencies (CPDC) as follows:

\[
MPA = .70(CGPA) + .25(CMPI) + .05(CPDC)
\]

The **Athletic Director’s List** recognizes those cadets who earn honors on the semester physical fitness examination (PFE).

The **Regimental Commander’s List** recognizes cadets who have increased their TGPA by at least 0.50 over the previous semester’s TGPA and have not failed any course. Their TGPA must be at least 2.00 but less than 3.15 (which would qualify them for the Dean’s List).

Honors at Graduation: In recognition of high scholastic achievement, the Academy, upon recommendation of the faculty, awards the Bachelor of Science Degree with the following distinctions: High Honors for those who have earned a CGPA of 3.50 or higher; Honors for those earning a CGPA between 3.15 and 3.49. The Distinguished Graduate designation recognizes the cadet who graduates with the highest Military Precedence Average. The Honor Graduate designation recognizes the cadet who graduates with the highest Cumulative Grade Point Average.

BACHELOR OF SCIENCE DEGREE

Each major has specific academic requirements for acceptance, standards for validating courses taken externally, and specific course requirements. In addition, there are distribution requirements that apply to all majors and overall requirements for graduating with a Bachelor of Science degree.

Degree and Graduation Requirements

Degree and graduation requirements are officially published in the Regulations for the Corps of Cadets. These requirements for the degree of Bachelor of Science and a commission as an Ensign in the United States Coast Guard are as follows:

a. Pass or validate every course in the core curriculum.

b. A cadet must complete at least 130 semester hours at USCGA (including those completed in the SAEP and the Connecticut College Exchange Programs, not to exceed 24 semester hours) to satisfy residency requirements, regardless of semester hours validated. Courses which do not fulfill residency requirements include those validated, courses carrying no semester hour credit, pass/fail or satisfactory/unsatisfactory graded courses, and failed courses.

c. Attain an average of at least a 2.00 in all required “upper-division” courses in the major, as specified in the official Catalog of Courses. For repeated courses, all grades earned are included in the average.

d. Satisfy the academic requirements for one of the majors as specified in the official Catalog of Courses.

e. Attain a Cumulative Grade Point Average of at least a 2.00.

f. Be in residence at the Academy for at least four academic years (A semester spent in the SAEP program counts as a semester in residence).

g. Successfully complete all required portions of the physical education program, including meeting minimum swimming and physical fitness standards.

h. Meet all military performance standards, demonstrating all aspects of personal and professional development necessary to serve as Ensigns in the United States Coast Guard, unless a commission will not be offered due to a medical disqualification.

International cadets must meet the same standards of personal and professional development as all other graduates, notwithstanding that they are not entitled to appointment in the U.S. Coast Guard.

The Superintendent confers the degree of Bachelor of Science on those cadets in good standing who have met these requirements or revisions published since matriculation.
VALIDATIONS

The validation procedure is a mechanism whereby cadets may request a course exemption, based on personal competency or academic work completed elsewhere. This procedure affords cadets the opportunity to enroll in additional courses that will further enrich their undergraduate education. Validated courses are not awarded credit hours or quality points, nor may they be used to satisfy the minimum semester course load requirement. Courses accepted for validation credit may not be taken at a subsequent time for academic credit. A validated course does count for purposes of meeting the ABET minimums for the combined math and sciences, engineering topics, and general education component -- the intent is that a validated course results in addition of a free elective to that cadet’s individual curriculum.

Validation Requirements

The requirements to validate a course are exclusively governed by the Academic Department responsible for offering that course.

Some accomplishments that may lead to granting of validation credit, provided they are acceptable to the Department, are:

a. Score of 4 or better on the CEEB Advanced Placement examinations; or
b. Grade of C or better in an equivalent college course at an accredited college or university as evidenced by a college transcript; or
c. Grade of B or better in an Advanced Placement or college-level course that has been certified by an accredited college or university as noted on the high school transcript.

In addition to the general guidelines, Department Heads may apply specific requirements unique to the department’s academic courses that supersede requirement (a), (b), or (c). The following unique requirements have been established:

Engineering Department Validation

Cadets may validate courses offered by the Engineering Department if they have accomplished requirements (b) or (c) above and gained the written approvals of the Program Chair in charge of that course, and the Engineering Department Head. Cadets may be required to take an oral or written exam to demonstrate adequate proficiency of the course material.

Humanities Department Validation

Cadets may validate courses offered by the Department of Humanities only if they have taken an accredited college course with a transcript grade of B or better and passed an examination administered by the CGA course coordinator. College Composition may NOT be validated. Cadets who have earned a score of 5 on an Advanced Placement Examination in American Government must pass an examination administered by the course coordinator to be placed out of the core course into a more advanced class in the same discipline.

Health and Physical Education Department Validation

The purpose of course validation in the Health and Physical Education (HPE) Curriculum is to permit any cadet the opportunity to validate selected HPE courses based upon work completed elsewhere or his / her capacity to meet the skill and the academic criteria of a specific course. Cadets may validate select HPE courses within the first week of the semester. All validations are to be conducted by the course instructors under the direction of the Department Head, and any changes shall be processed through the Registrar’s Office in accordance with course Add/ Drop procedures.

Management Department Validation

Cadets may validate courses offered by the Management Department if they have taken an accredited college course with a transcript grade of B or better, or if they have taken an equivalent AP high school course with a transcript grade of B or better and receive a score of 5 on the CEEB AP exam. Cadets may also be required to take an oral exam administered by the course coordinator to demonstrate adequate proficiency of the subject.
Mathematics Department Validation
Cadets may validate courses offered by the Mathematics Department if they demonstrate adequate proficiency on a comprehensive validation exam administered by an exam coordinator designated by the Mathematics Department Head. Written approval by the Mathematics Department Head is also required.

Sciences Department Validation
The validation criteria for Chemistry I and II is an AP test score of 5 or satisfactory performance on an American Chemical Society National Standardized Exam.

The validation criterion used for Physics I or II is demonstrated proficiency on a Physics I or II validation exam administered by the Physics Section.

DISTRIBUTION REQUIREMENTS
Courses from the following programs, which satisfy broad academic and professional purposes, are integrated in each of the Majors (with substitutions to satisfy any unique program needs):
- Core curriculum
- Professional Maritime Studies Program
- Special programs
- Health and Physical Education Program

MAJORS REQUIREMENTS
To earn the degree of Bachelor of Science, cadets must successfully complete the academic requirements for one of the following majors:
- Civil Engineering
- Electrical Engineering
- Mechanical Engineering
- Naval Architecture and Marine Engineering
- Marine and Environmental Sciences
- Operations Research and Computer Analysis
- Management
- Government

Each major has specific course requirements, including the distribution courses, mandatory courses, area or related elective courses, designated course substitutions, and optionally, free elective courses. Given the breadth of study inherent in the Academy’s core curriculum, free electives are not required for graduation. Therefore they can be waived if at least 15 academic credits (not including Health and Physical Education credits) are taken each semester.

SUMMER ACADEMIC TERM
The Academy offers a single six-week summer academic term beginning approximately five weeks after the end of the spring semester. Enrollment is limited to the following:
- Cadets placed in the Foundation for Calculus and Intro to College Communications courses as result of initial course placement;
- Cadets who successfully complete course 3111, Calculus I, in their 4/c spring semester and have an intended major that requires Calculus II at the start of 3/c fall in order to meet prerequisite requirements in that major's nominal plan of study;
- Cadets with an intended major that requires Calculus II at the start of 3/c fall in order to meet prerequisite requirements in that major's nominal plan of study who fail 3117, Calculus II, in their 4/c spring semester and are not required to change major by the spring Academic Review Board; and
- Cadets otherwise approved for summer school by the Dean of Academics.

Cadets will be registered for two academic classes during the summer term. Typically, 1118 (Engineering Mechanics), 3117 (Calculus II), and 8211 (Organizational Behavior and Leadership) are offered during the Summer Academic Term.
APPLICABILITY

The Academic Standards and Requirements defined in this Catalog apply in full to the Class of 2021, effective Fall 2017.

Any cadet who is either extended or readmitted to the Academy is subject to the academic regulations that apply to the new class to which he or she is assigned. The Catalog also includes the appropriate policies, procedures and other information deemed appropriate by the Dean and the Registrar.
Part IV - Programs of Study

Core Curriculum
(Dean of Academics)

<table>
<thead>
<tr>
<th>Core Curriculum Requirements</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0901 History of the United States Coast Guard</td>
<td>1.00</td>
</tr>
<tr>
<td>1104 Introduction to Computing</td>
<td>3.00</td>
</tr>
<tr>
<td>or 1105 Introduction to Computing (Honors)</td>
<td>3.00</td>
</tr>
<tr>
<td>or 2142 Computer Problem Solving</td>
<td>3.00</td>
</tr>
<tr>
<td>1332 Principles of Electronic Communication Systems</td>
<td>1.50</td>
</tr>
<tr>
<td>or 1218 Electrical Engineering I</td>
<td>4.00</td>
</tr>
<tr>
<td>2111 College Composition</td>
<td>3.00</td>
</tr>
<tr>
<td>or 2121 The Art of Effective Writing</td>
<td>3.00</td>
</tr>
<tr>
<td>2131 Cultural Perspectives: American Social Movements</td>
<td>3.00</td>
</tr>
<tr>
<td>or 2132 Cultural Perspectives: Ethnic Lit in America</td>
<td>3.00</td>
</tr>
<tr>
<td>or 2133 Cultural Perspectives: Intro to Latin Amer Culture</td>
<td>3.00</td>
</tr>
<tr>
<td>2163 American Government</td>
<td>3.00</td>
</tr>
<tr>
<td>2293 Moral, Ethical, and Political Philosophy</td>
<td>3.00</td>
</tr>
<tr>
<td>or 2393 Moral and Ethical Philosophy</td>
<td>3.33</td>
</tr>
<tr>
<td>or 2394 Ethics</td>
<td>2.00</td>
</tr>
<tr>
<td>and 1493 Engineering Ethics or 5493 Ethics</td>
<td>1.00</td>
</tr>
<tr>
<td>2398 Law</td>
<td>4.00</td>
</tr>
<tr>
<td>2485 Global Studies</td>
<td>3.00</td>
</tr>
<tr>
<td>3111 Calculus I</td>
<td>4.00</td>
</tr>
<tr>
<td>3213 Probability and Statistics</td>
<td>3.00</td>
</tr>
<tr>
<td>or 3301 Advanced Engineering Mathematics</td>
<td>4.00</td>
</tr>
<tr>
<td>or 3341 Probability Theory</td>
<td>3.00</td>
</tr>
<tr>
<td>5102 Chemistry I</td>
<td>4.00</td>
</tr>
<tr>
<td>5162 Physics I</td>
<td>4.00</td>
</tr>
<tr>
<td>5206 Chemistry II</td>
<td>4.00</td>
</tr>
<tr>
<td>or 5208 Chemistry II (Honors)</td>
<td>4.00</td>
</tr>
<tr>
<td>or 5266 Physics II</td>
<td>4.00</td>
</tr>
<tr>
<td>5444 Atmospheric and Marine Sciences</td>
<td>1.50</td>
</tr>
<tr>
<td>or 5238 Physical Oceanography</td>
<td>3.50</td>
</tr>
<tr>
<td>8115 Macroeconomic Principles</td>
<td>3.00</td>
</tr>
<tr>
<td>or 8313 Essentials of Economics</td>
<td>2.00</td>
</tr>
<tr>
<td>8211 Organizational Behavior and Leadership</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Professional Maritime Studies Program
(Dean and Commandant of Cadets)

<table>
<thead>
<tr>
<th>Professional Maritime Studies Program - Core Requirements</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>6101 Fundamentals of Navigation</td>
<td>4.00</td>
</tr>
<tr>
<td>6201 Ships and Maritime Systems</td>
<td>3.00</td>
</tr>
<tr>
<td>6202 Applications in Navigation Lab</td>
<td>1.00</td>
</tr>
<tr>
<td>6301 The Maritime Watch Officer</td>
<td>4.00</td>
</tr>
<tr>
<td>6401 Selected Topics for the 100 Ton Master</td>
<td>3.00</td>
</tr>
<tr>
<td>6402 Selected Topics for the 100 Ton Master Lab</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Health and Physical Education Program

(Director of Athletics)

The Mission states: “To graduate young men and women with sound bodies, stout hearts, and alert minds...” To this end, the Athletics Division not only supports shared learning outcomes but also has developed its own set of specific outcomes. At the end of the four-year physical education program, graduates are expected to demonstrate their ability to:

- Maintain a personal fitness program that allows them to meet the physical demands required of Coast Guard officers; be capable of counseling others in the methods, concepts, and materials used in developing and maintaining a healthy lifestyle;
- Function successfully in an aquatics environment; defend themselves and others; and provide emergency aid to those in need;
- Set individual and team level goals for short and long term planning, and assess and analyze results; and
- Perform as a group member in achieving a common goal, and persist in an ethical and disciplined manner when faced with adverse conditions in striving to achieve the goal.

Cadets are required to complete health or physical education courses each year as part of the total curriculum, and to maintain a high degree of general physical fitness. During their years at the Academy, cadets are provided with the program and facilities that will assist them in the development of their physical potential. In order to assess their physical development competencies, cadets must successfully complete all Physical Fitness Examination requirements each semester while at the Academy. Cadets are required to be active in co-curricular physical activities such as intercollegiate athletics or intercompany or club sports each semester where they develop psychosocial and sport skills through their participation.

The Health and Physical Education (HPE) curriculum includes six semesters of required courses. For the first three years, the curriculum is focused on the development of professional competencies and fitness/wellness knowledge and skills. In the first class year, cadets choose from a variety of lifetime physical activities.

Cadets must normally satisfactorily complete or validate all core HPE courses before taking any elective physical education courses. As a graduation requirement, each cadet must pass or validate a minimum of six (6) academic credits in HPE.

Course Requirements

<table>
<thead>
<tr>
<th>HPE Mandatory Core Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4102 Principles of Fitness and Wellness I</td>
<td>1.00</td>
</tr>
<tr>
<td>4103 Personal Defense I</td>
<td>0.25</td>
</tr>
<tr>
<td>4111 Swimming</td>
<td>0.25</td>
</tr>
<tr>
<td>4112 Principles of Fitness and Wellness II</td>
<td>1.00</td>
</tr>
<tr>
<td>4204 Lifetime Sports I: Racquetball</td>
<td>0.25</td>
</tr>
<tr>
<td>4214 Lifetime Sports II: Golf</td>
<td>0.25</td>
</tr>
<tr>
<td>4222 Professional Rescuer</td>
<td>2.00</td>
</tr>
<tr>
<td>4303 Personal Defense II: Maritime Law Enforcement Techniques</td>
<td>0.25</td>
</tr>
<tr>
<td>4304 Lifetime Sports III: Tennis</td>
<td>0.25</td>
</tr>
</tbody>
</table>

First Class cadets select one (or more) of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4405 Adventure Sports I: Rock Climbing</td>
<td>0.50</td>
</tr>
<tr>
<td>4407 Dance</td>
<td>0.50</td>
</tr>
<tr>
<td>4411 Scuba Diving</td>
<td>0.50</td>
</tr>
<tr>
<td>4414 Advanced Golf</td>
<td>0.25</td>
</tr>
<tr>
<td>4415 Adventure Sports II</td>
<td>0.50</td>
</tr>
<tr>
<td>4439 Theory of Coaching</td>
<td>1.00</td>
</tr>
<tr>
<td>4444 Indoor Recreational Sports</td>
<td>0.50</td>
</tr>
<tr>
<td>4459 Sport/Wellness Leader</td>
<td>0.50</td>
</tr>
<tr>
<td>4464 Strength and Conditioning</td>
<td>0.50</td>
</tr>
<tr>
<td>4489 Selected Topics in Health and Physical Education</td>
<td>0.50 - 2.00</td>
</tr>
</tbody>
</table>
PART V - DEPARTMENTAL PROGRAMS

The following sections for each major include a statement about the major, and criteria for acceptance into the major, along with Course Requirements, and a sample eight-semester Program of Study.

CIVIL ENGINEERING

Civil Engineering (CE) provides a solid background in mathematics and basic sciences applied toward the study and design of engineered systems. As a broad field encompassing many disciplines, Civil Engineering offers a challenging and fulfilling career to individuals with a wide variety of interests. Upper level courses in the major include study in structural engineering, geotechnical engineering, construction management, water resources, transportation and environmental engineering. The program emphasizes development of open-ended problem solving, team building skills, creativity, and communication ability. Particular emphasis is placed on balancing theory and practice of engineering so that graduates are intellectually and professionally prepared to provide engineering services to the Coast Guard. In the senior level capstone design course, students integrate what they have learned in the design of a Civil Engineering system. Most capstone projects involve work on Coast Guard related projects. Graduates of the major are well prepared to pursue a variety of career opportunities and graduate programs in and out of the Coast Guard. The program is accredited by the ABET Engineering Accreditation Commission, http://www.abet.org.

In addition to the common departmental mission and common Student Outcomes, the Civil Engineering Major produces graduates who:

- Can apply knowledge in the areas of structural, construction, environmental, and geotechnical engineering.
- Can conduct fundamental civil engineering experiments, analyze and interpret data, and prepare engineering reports.
- Can design a sustainable and resilient system, component, or process in the context of structural, construction, environmental, and geotechnical engineering.
- Can explain basic concepts in project management, business, public policy, and leadership; analyze issues in professional ethics; and can explain the importance of professional licensure.

Civil Engineering Program Educational Objectives:
Within 7 years after graduation, graduates of the Civil Engineering Program:

- perform effectively in a variety of career paths as Junior Officers in the Coast Guard
- provide appropriate Civil Engineering expertise to the Coast Guard while serving in Civil Engineering related billets
- demonstrate a commitment to intellectual and professional growth through activities and accomplishments such as graduate study, professional licensure, professional society activity, and/or continuing education

Acceptance into the Major
Acceptance requires attainment of a minimum of 2.00 average in all Mathematics, Science, and Engineering courses taken prior to the beginning of the 2/c year.

In addition, a grade of C or above is required in the following courses:

1118 Engineering Mechanics - Statics
1206 Mechanics of Materials

If a student has validated a course, no grade for that course is included in the average. All grades for failed or repeated courses will be included in the acceptance into major GPA calculation.

I. Core Requirements:
Probability Theory (3341) or Advanced Engineering Mathematics (3301) may be substituted for
Probability and Statistics (3213).

II. Major Requirements:

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1118</td>
<td>Engineering Mech - Statics</td>
</tr>
<tr>
<td>1210</td>
<td>Mat’ls Civil/Constr Engr</td>
</tr>
<tr>
<td>1309</td>
<td>Environmental Engr I</td>
</tr>
<tr>
<td>1313</td>
<td>Steel Design</td>
</tr>
<tr>
<td>1321</td>
<td>Elec Cir & Machines</td>
</tr>
<tr>
<td>1401</td>
<td>Construction Project Mgmt</td>
</tr>
<tr>
<td>1404</td>
<td>Geotechnical Engr Design</td>
</tr>
<tr>
<td>1411</td>
<td>Reinf Concrete Design</td>
</tr>
<tr>
<td>3211</td>
<td>Multivariable Calculus</td>
</tr>
<tr>
<td>5206</td>
<td>Chemistry II</td>
</tr>
<tr>
<td>1206</td>
<td>Mech of Materials</td>
</tr>
<tr>
<td>1304</td>
<td>Soil Mechanics</td>
</tr>
<tr>
<td>1312</td>
<td>Transportation Engineering</td>
</tr>
<tr>
<td>1317</td>
<td>Struct Analysis</td>
</tr>
<tr>
<td>1340</td>
<td>Fluid Mechanics</td>
</tr>
<tr>
<td>1402</td>
<td>Civil Engineering Design</td>
</tr>
<tr>
<td>1407</td>
<td>Environmental Engr II</td>
</tr>
<tr>
<td>3117</td>
<td>Calculus II</td>
</tr>
<tr>
<td>3215</td>
<td>Differential Equations</td>
</tr>
<tr>
<td>5266</td>
<td>Physics II</td>
</tr>
<tr>
<td></td>
<td>Engineering Elective</td>
</tr>
</tbody>
</table>

III. Civil Engineering Elective:

Engineering elective courses for the CE major are defined as Engineering courses, 1200 level or higher, of 3 credits or greater. In special cases (and with prior approval by the Civil Engineering Section Chief), Directed Studies in Civil Engineering (1419) may be considered a major area elective. Below is a list of common engineering electives.

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1211</td>
<td>Dynamics</td>
</tr>
<tr>
<td>1351</td>
<td>Thermodynamics</td>
</tr>
<tr>
<td>1409</td>
<td>Water Resources Engr</td>
</tr>
<tr>
<td>1414</td>
<td>Struct Dsgn Extreme Events</td>
</tr>
</tbody>
</table>

IV. Upper Division Courses:

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1304</td>
<td>Soil Mechanics</td>
</tr>
<tr>
<td>1312</td>
<td>Transportation Engineering</td>
</tr>
<tr>
<td>1317</td>
<td>Struct Analysis</td>
</tr>
<tr>
<td>1340</td>
<td>Fluid Mechanics</td>
</tr>
<tr>
<td>1401</td>
<td>Construction Project Mgmt</td>
</tr>
<tr>
<td>1402</td>
<td>Civil Engineering Design</td>
</tr>
<tr>
<td>1407</td>
<td>Environmental Engr II</td>
</tr>
<tr>
<td>1409</td>
<td>Water Resources Engr</td>
</tr>
<tr>
<td>1419</td>
<td>Dir Studies in Civil Engr</td>
</tr>
<tr>
<td>1309</td>
<td>Environmental Engr I</td>
</tr>
<tr>
<td>1313</td>
<td>Steel Design</td>
</tr>
<tr>
<td>1321</td>
<td>Elec Cir & Machines</td>
</tr>
<tr>
<td>1401</td>
<td>Construction Project Mgmt</td>
</tr>
<tr>
<td>1404</td>
<td>Geotech Engr Design</td>
</tr>
<tr>
<td>1411</td>
<td>Reinf Concrete Design</td>
</tr>
<tr>
<td>1414</td>
<td>Struct Dsgn Extreme Events</td>
</tr>
</tbody>
</table>
Civil Engineering - General

Fall Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0901</td>
<td>History of the USCG</td>
<td>1.00 *</td>
<td>1118</td>
<td>Engineering Mech - Statics</td>
<td>3.00 *</td>
</tr>
<tr>
<td>1104</td>
<td>Intro to Computing</td>
<td>3.00 *</td>
<td>213X</td>
<td>Cultural Perspectives</td>
<td>3.00 *</td>
</tr>
<tr>
<td>2111</td>
<td>College Composition</td>
<td>3.00 *</td>
<td>2163</td>
<td>American Government</td>
<td>3.00 *</td>
</tr>
<tr>
<td>3111</td>
<td>Calculus I</td>
<td>4.00</td>
<td>3117</td>
<td>Calculus II</td>
<td>4.00</td>
</tr>
<tr>
<td>4102</td>
<td>Prin Fitness/Wellness I</td>
<td>1.00</td>
<td>4103</td>
<td>Personal Defense I</td>
<td>0.25</td>
</tr>
<tr>
<td>4111</td>
<td>Swimming</td>
<td>0.25</td>
<td>4112</td>
<td>Prin Fitness/Wellness II</td>
<td>1.00</td>
</tr>
<tr>
<td>5102</td>
<td>Chemistry I</td>
<td>4.00</td>
<td>5162</td>
<td>Physics I</td>
<td>4.00</td>
</tr>
<tr>
<td>6101</td>
<td>Fndamntls of Navigation</td>
<td>4.00 *</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* These courses may be scheduled during the Fall or Spring Semester.

Spring Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Third Class Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1206</td>
<td>Mech of Materials</td>
<td>3.50</td>
<td>1210</td>
<td>Mat'l Civil/Constr Engr</td>
<td>4.00</td>
</tr>
<tr>
<td>3211</td>
<td>Multivariable Calculus</td>
<td>3.00</td>
<td>2394</td>
<td>Ethics</td>
<td>2.00</td>
</tr>
<tr>
<td>3213</td>
<td>Probability & Statistics</td>
<td>3.00</td>
<td>3215</td>
<td>Differential Equations</td>
<td>3.00</td>
</tr>
<tr>
<td>4222</td>
<td>Professional Rescuer</td>
<td>2.00</td>
<td>4204</td>
<td>Lifetime Sports I: RQB</td>
<td>0.25</td>
</tr>
<tr>
<td>5266</td>
<td>Physics II</td>
<td>4.00</td>
<td>4214</td>
<td>Lifetime Sports II: Golf</td>
<td>0.25</td>
</tr>
<tr>
<td>6202</td>
<td>Apps in Navigation Lab</td>
<td>1.00</td>
<td>5206</td>
<td>Chemistry II</td>
<td>4.00</td>
</tr>
<tr>
<td>8211</td>
<td>Org Behavior/Ldrship</td>
<td>3.00</td>
<td>6201</td>
<td>Ships & Maritime Sys</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8313</td>
<td>Essentials of Economics</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Second Class Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1304</td>
<td>Soil Mechanics</td>
<td>4.00</td>
<td>1312</td>
<td>Transportation Engineering</td>
<td>3.00</td>
</tr>
<tr>
<td>1309</td>
<td>Environmental Engr I</td>
<td>4.00</td>
<td>1313</td>
<td>Steel Design</td>
<td>3.00</td>
</tr>
<tr>
<td>1317</td>
<td>Struct Analysis</td>
<td>3.00</td>
<td>1407</td>
<td>Environmental Engr II</td>
<td>3.00</td>
</tr>
<tr>
<td>1332</td>
<td>Prin Elec Comm Sys</td>
<td>1.50</td>
<td>1421</td>
<td>Reinf Concrete Dsgn</td>
<td>3.00</td>
</tr>
<tr>
<td>1340</td>
<td>Fluid Mechanics</td>
<td>3.00</td>
<td>4303</td>
<td>Personal Defense II</td>
<td>0.25</td>
</tr>
<tr>
<td>5444</td>
<td>Atmospherc & Mar Sci</td>
<td>1.50</td>
<td>4304</td>
<td>Lifetime Sports III: Tennis</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6301</td>
<td>Maritime Watch Officer</td>
<td>4.00</td>
</tr>
</tbody>
</table>

First Class Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1321</td>
<td>Elec Cir & Machines</td>
<td>4.00</td>
<td>1402</td>
<td>Civil Engr Design</td>
<td>4.00</td>
</tr>
<tr>
<td>1401</td>
<td>Const Proj Mgmt</td>
<td>3.00</td>
<td>1493</td>
<td>Engineering Ethics</td>
<td>1.00</td>
</tr>
<tr>
<td>1404</td>
<td>Geotechnical Engr Design</td>
<td>3.00</td>
<td>2398</td>
<td>Law</td>
<td>4.00</td>
</tr>
<tr>
<td>6402</td>
<td>SelTps 100 Ton Master Lab</td>
<td>1.00</td>
<td>2485</td>
<td>Global Studies</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>Engineering Elective</td>
<td>3.00-4.00</td>
<td>6401</td>
<td>SelTps 100 Ton Master</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>Free Elective **</td>
<td>3.00-4.00</td>
<td></td>
<td>Free Elective **</td>
<td>3.00-4.00</td>
</tr>
<tr>
<td></td>
<td>Physical Education</td>
<td>0.50</td>
<td></td>
<td>Physical Education</td>
<td>See Note</td>
</tr>
</tbody>
</table>

Note: First class cadets must take 0.50 credit hours of health and physical education. As a graduation requirement, each cadet must pass or validate a minimum of six (6) academic credits in HPE.

** Given the breadth of study inherent in the Academy's core curriculum, free electives are not required for graduation. Therefore they can be waived if at least 15 academic credits (not including Health and Physical Education credits) are taken each semester.
Electrical Engineering

The Electrical Engineering (EE) major prepares future officers to be the leaders in developing and implementing new technologies in the Coast Guard. The student who completes this program will be thoroughly ready for professional practice and a wide spectrum of postgraduate studies. Major prescribed courses provide an integrated understanding of the core disciplines of electrical engineering. These include digital communications, signal processing, control systems, circuit design, and cyber systems (which includes computer programming and computer networks). In addition to this comprehensive foundation, students select courses in Antennas & Propagation and Electromechanical Systems (Systems Emphasis) or Computer Network Security and Software Engineering (Computer Emphasis). The degree granted from either emphasis is the Bachelor of Science in Electrical Engineering. This program is accredited by ABET (http://www.abet.org). In the capstone senior design course, students creatively apply knowledge to solve challenging real-world problems, often sponsored by Coast Guard personnel. The Electrical Engineering capstone projects generally fall in one of four areas:

1. Robotics and Control (including Autonomous Systems)
2. Communication and Signal Processing (including Electronic Navigation)
3. Cybersecurity and Cyber-Physical Systems (including Cyberengineering)
4. Power and Renewable Energy (including Electromagnetics)

In addition to the common departmental program mission and common Student Outcomes, the Electrical Engineering Major produces graduates who have:

- knowledge of probability and statistics, including applications appropriate to Electrical Engineering
- knowledge of mathematics through differential and integral calculus, basic sciences, and engineering sciences necessary to analyze and design complex electrical and electronic devices, software, and systems containing hardware and software components, as appropriate to program objectives
- knowledge of advanced mathematics, typically including differential equations, linear algebra, complex variables, and discrete mathematics

Electrical Engineering Program Educational Objectives:
The U.S. Coast Guard Academy Electrical Engineering program produces graduates who, within several years of graduation:

1. Demonstrate proficiency in the professional practice of engineering as USCG junior officers.
2. Demonstrate intellectual or professional growth as evidenced by post-graduate education, licensing, certification, promotion, and participation in pertinent professional societies
3. Contribute electrical engineering expertise to U.S. Coast Guard engineering challenges, specifically in the areas of Command, Control, Computers, Communications, and Information Technology (C4&IT) systems, within the framework of Systems Development Life Cycle (SDLC) processes.

Acceptance into the Major
Acceptance requires attainment of a 2.00 average in all Mathematics, Science, and Engineering courses taken prior to the beginning of the 2/c year. In addition, a grade of C or above is required in the following courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1104</td>
<td>Introduction to Computing</td>
</tr>
<tr>
<td>1218</td>
<td>Electrical Engineering I</td>
</tr>
<tr>
<td>1222</td>
<td>Signals, Systems, and Transforms</td>
</tr>
<tr>
<td>1225</td>
<td>Digital Circuits and Computer Systems</td>
</tr>
<tr>
<td>1325</td>
<td>Computer Communications and Networking</td>
</tr>
</tbody>
</table>
and a passing grade is required in the following courses:
1212 Analytical Methods in Engineering or 3215 Differential Equations
1220 Transition to Object Oriented Programming
3211 Multivariable Calculus

If a student has validated a course, no grade for that course is included in the average. All grades for failed or repeated courses will be included in the acceptance into major GPA calculation.

I. Core Requirements:
Electrical Engineering majors shall take Physics II (5266) as their third lab science course and are not be required to take Principles of Electronic Communication Systems (1332). Substitute Probability Theory (3341) for Probability and Statistics (3213).

II. Major Requirements:

<table>
<thead>
<tr>
<th>Computer Emphasis</th>
<th>Systems Emphasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1118 Engineering Mech - Statics</td>
<td>1118 Engineering Mech - Statics</td>
</tr>
<tr>
<td>1212 Analytl Methods Engr</td>
<td>1212 Analytl Methods Engr</td>
</tr>
<tr>
<td>1218 Elec Engineering I</td>
<td>1218 Elec Engineering I</td>
</tr>
<tr>
<td>1220 Trans to Obj Ori Prog</td>
<td>1220 Trans to Obj Ori Prog</td>
</tr>
<tr>
<td>1222 Signals, Systems & Trnsfrms</td>
<td>1222 Signals, Systems & Trnsfrms</td>
</tr>
<tr>
<td>1225 Digital Circ/Comp Systems</td>
<td>1225 Digital Circ/Comp Systems</td>
</tr>
<tr>
<td>1322 Linear Circuits</td>
<td>1322 Linear Circuits</td>
</tr>
<tr>
<td>1325 Computer Comms & Ntwrkg</td>
<td>1323 Antennas & Propagation</td>
</tr>
<tr>
<td>1328 Software Engineering</td>
<td>1325 Computer Comms & Ntwrkg</td>
</tr>
<tr>
<td>1329 Digital Signal Process</td>
<td>1329 Digital Signal Process</td>
</tr>
<tr>
<td>1330 Comp & Net Security</td>
<td>1331 Automatic Control Systems</td>
</tr>
<tr>
<td>1331 Automatic Control Systems</td>
<td>1420 Electromech Systems</td>
</tr>
<tr>
<td>1422 Communication Systems</td>
<td>1422 Communication Systems</td>
</tr>
<tr>
<td>1426 Capstone Proj/EE I</td>
<td>1426 Capstone Proj/EE I</td>
</tr>
<tr>
<td>1436 Capstone Proj/EE II</td>
<td>1436 Capstone Proj/EE II</td>
</tr>
<tr>
<td>3117 Calculus II</td>
<td>3117 Calculus II</td>
</tr>
<tr>
<td>or 3115 Calc II (V)</td>
<td>or 3115 Calc II (V)</td>
</tr>
<tr>
<td>3211 Multivariable Calculus</td>
<td>3211 Multivariable Calculus</td>
</tr>
<tr>
<td>___ Engineering Elective (2)</td>
<td>___ Engineering Elective (2)</td>
</tr>
<tr>
<td>___ Math/Sci Elective</td>
<td>___ Math/Sci Elective</td>
</tr>
</tbody>
</table>

III. Engineering Electives:
Engineering elective courses for the EE major are defined as Engineering courses, 1200 level or higher, of 3 credits or greater, other than Electric Circuits and Machines (1321), and Modeling and Control of Dynamic Systems (1460). In special cases (and with prior approval by the Electrical Engineering Section Chief), Directed Studies in Electrical Engineering (1439) may be considered a major area elective. Below is a list of common engineering electives for each track.

<table>
<thead>
<tr>
<th>Computer Emphasis</th>
<th>Systems Emphasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1206 Mech of Materials</td>
<td>1206 Mech of Materials</td>
</tr>
<tr>
<td>1211 Dynamics</td>
<td>1211 Dynamics</td>
</tr>
<tr>
<td>1323 Antennas & Propagation</td>
<td>1328 Software Engineering</td>
</tr>
<tr>
<td>1340 Fluid Mechanics</td>
<td>1330 Comp & Net Security</td>
</tr>
<tr>
<td>1351 Thermodynamics</td>
<td>1340 Fluid Mechanics</td>
</tr>
<tr>
<td>1420 Electromech Systems</td>
<td>1351 Thermodynamics</td>
</tr>
<tr>
<td>1431 Electronic Nav Systems</td>
<td>1431 Electronic Nav Systems</td>
</tr>
</tbody>
</table>

IV. Mathematics/Science Elective:
The purpose of the Mathematics/Science Elective is to offer students the chance to add breadth or depth to their Electrical Engineering course of study. Students must choose one course from the following list:
V. Upper Division Courses:

For the purposes of USCGA graduation requirements, upper-division courses in the Electrical Engineering major are defined as those courses specified for the major that a cadet, following the published nominal program of study, would take during his/her 1/c and 2/c years. Each cadet must satisfy the graduation requirements with a set of courses that includes those courses required of all EE majors plus the courses required for one of the established areas of emphasis (tracks).

For all Electrical Engineering Majors:

• 1322 Linear Circuits
• 1329 Digital Signal Processing
• 1331 Automatic Control Systems
• 1422 Communication Systems
• 1426 Capstone Projects in Electrical Engineering I
• 1436 Capstone Projects in Electrical Engineering II
• 3341 Probability Theory
• ____ Engineering Elective (2)
• ____ Mathematics/Science Elective

Additionally for the Computer Emphasis:

• 1328 Software Engineering
• 1330 Comp & Net Security

Additionally for the Systems Emphasis:

• 1323 Antennas and Propagation
• 1420 Electromechanical Systems
Electrical Engineering – Computer Emphasis

Fall Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2111</td>
<td>College Composition</td>
<td>3.00</td>
<td>0901</td>
<td>History of the USCG</td>
<td>1.00</td>
</tr>
<tr>
<td>2163</td>
<td>American Government</td>
<td>3.00</td>
<td>1104</td>
<td>Intro to Computing</td>
<td>3.00</td>
</tr>
<tr>
<td>3111</td>
<td>Calculus I</td>
<td>4.00</td>
<td>1118</td>
<td>Engineering Mech - Statics</td>
<td>3.00</td>
</tr>
<tr>
<td>4102</td>
<td>Prin Fitness/Wellness I</td>
<td>1.00</td>
<td>213X</td>
<td>Cultural Perspectives</td>
<td>3.00</td>
</tr>
<tr>
<td>4111</td>
<td>Swimming</td>
<td>0.25</td>
<td>3117</td>
<td>Calculus II</td>
<td>4.00</td>
</tr>
<tr>
<td>5102</td>
<td>Chemistry I</td>
<td>4.00</td>
<td>4103</td>
<td>Personal Defense I</td>
<td>0.25</td>
</tr>
<tr>
<td>6101</td>
<td>Fundamentals of Navigation</td>
<td>4.00</td>
<td>4112</td>
<td>Prin Fitness/Wellness II</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5162</td>
<td></td>
<td>Physics I</td>
<td>4.00</td>
</tr>
</tbody>
</table>

* These courses may be scheduled during the Fall or Spring Semester.

Third Class Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1212</td>
<td>Analytical Methods Engr</td>
<td>4.00</td>
<td>1222</td>
<td>Sgnls, Sys & Transfrms</td>
<td>4.00</td>
</tr>
<tr>
<td>1218</td>
<td>Elec Engineering I</td>
<td>4.00</td>
<td>1225</td>
<td>Digital Circ/Comp Sys</td>
<td>4.00</td>
</tr>
<tr>
<td>1220</td>
<td>Trans to Obj Ori Prog</td>
<td>2.00</td>
<td>1325</td>
<td>Compotr Comms & Ntwks</td>
<td>3.50</td>
</tr>
<tr>
<td>4222</td>
<td>Professional Rescuer</td>
<td>2.00</td>
<td>3211</td>
<td>Multivariable Calculus</td>
<td>3.00</td>
</tr>
<tr>
<td>5266</td>
<td>Physics II</td>
<td>4.00</td>
<td>4204</td>
<td>Lifetime Sports I: RQB</td>
<td>0.25</td>
</tr>
<tr>
<td>6202</td>
<td>Apps in Navigation Lab</td>
<td>1.00</td>
<td>4214</td>
<td>Lifetime Sports II: Golf</td>
<td>0.25</td>
</tr>
<tr>
<td>8211</td>
<td>Org Behavior/Ldrship</td>
<td>3.00</td>
<td>6201</td>
<td>Ships & Maritime Sys</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Second Class Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1322</td>
<td>Linear Circuits</td>
<td>4.00</td>
<td>1328</td>
<td>Software Engineering</td>
<td>4.00</td>
</tr>
<tr>
<td>1330</td>
<td>Comp & Net Security</td>
<td>4.00</td>
<td>1329</td>
<td>Digital Signal Process</td>
<td>3.00</td>
</tr>
<tr>
<td>2394</td>
<td>Ethics</td>
<td>2.00</td>
<td>1331</td>
<td>Automatic Control Sys</td>
<td>3.50</td>
</tr>
<tr>
<td>3341</td>
<td>Probability Theory</td>
<td>3.00</td>
<td>4303</td>
<td>Personal Defense II</td>
<td>0.25</td>
</tr>
<tr>
<td>8313</td>
<td>Essentials of Economics</td>
<td>2.00</td>
<td>4304</td>
<td>Lifetime Sports III: Tennis</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>Free Elective **</td>
<td>0.00-4.00</td>
<td>6301</td>
<td>Maritime Watch Officer</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Math/Sci Elective</td>
<td>3.00-4.00</td>
</tr>
</tbody>
</table>

First Class Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1422</td>
<td>Communication Systems</td>
<td>4.00</td>
<td>1436</td>
<td>Capstone Proj/EE II</td>
<td>4.00</td>
</tr>
<tr>
<td>1426</td>
<td>Capstone Proj/EE I</td>
<td>4.00</td>
<td>1493</td>
<td>Engineering Ethics</td>
<td>1.00</td>
</tr>
<tr>
<td>2398</td>
<td>Law</td>
<td>4.00</td>
<td>2485</td>
<td>Global Studies</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>Engineering Elective</td>
<td>3.00-4.00</td>
<td>5444</td>
<td>Atmospheric & Mar Sci</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>Free Elective **</td>
<td>0.00-4.00</td>
<td>6401</td>
<td>SelTps 100 Ton Master</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>Physical Education</td>
<td>0.50</td>
<td>6402</td>
<td>SelTps 100 Ton Master Lab</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Engineering Elective</td>
<td>3.00-4.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Physical Education</td>
<td>See Note</td>
</tr>
</tbody>
</table>

Note: First class cadets must take 0.50 credit hours of health and physical education. As a graduation requirement, each cadet must pass or validate a minimum of six (6) academic credits in HPE.

**Given the breadth of study inherent in the Academy's core curriculum, free electives are not required for graduation. Therefore they can be waived if at least 15 academic credits (not including Health and Physical Education credits) are taken each semester.
Electrical Engineering – Systems Emphasis

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th>Credits</th>
<th>Spring Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2111 College Composition</td>
<td>3.00 *</td>
<td>0901 History of the USCG</td>
<td>1.00 *</td>
</tr>
<tr>
<td>2163 American Government</td>
<td>3.00 *</td>
<td>1104 Intro to Computing</td>
<td>3.00 *</td>
</tr>
<tr>
<td>3111 Calculus I</td>
<td>4.00</td>
<td>1118 Engineering Mech - Statics</td>
<td>3.00 *</td>
</tr>
<tr>
<td>4102 Prin Fitness/Wellness I</td>
<td>1.00</td>
<td>213X Cultural Perspectives</td>
<td>3.00 *</td>
</tr>
<tr>
<td>4111 Swimming</td>
<td>0.25</td>
<td>3117 Calculus II</td>
<td>4.00</td>
</tr>
<tr>
<td>5102 Chemistry I</td>
<td>4.00</td>
<td>4103 Personal Defense I</td>
<td>0.25</td>
</tr>
<tr>
<td>6101 Fndmntls of Navigation</td>
<td>4.00 *</td>
<td>4112 Prin Fitness/Wellness II</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5162 Physics I</td>
<td>4.00</td>
</tr>
</tbody>
</table>

* These courses may be scheduled during the Fall or Spring Semester.

<table>
<thead>
<tr>
<th>Third Class Year</th>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1212 Analytl Methods Engr</td>
<td>4.00</td>
<td>1222 Sgnls, Sys & Trnsfrms</td>
</tr>
<tr>
<td>1218 Elec Engineering I</td>
<td>4.00</td>
<td>1225 Digital Circ/Comp Sys</td>
</tr>
<tr>
<td>1220 Trans to Obj Ori Prog</td>
<td>2.00</td>
<td>1325 Compr Comms & Ntwks</td>
</tr>
<tr>
<td>4222 Professional Rescuer</td>
<td>2.00</td>
<td>3211 Multivariable Calculus</td>
</tr>
<tr>
<td>5266 Physics II</td>
<td>4.00</td>
<td>4204 Lifetime Sports I: RQB</td>
</tr>
<tr>
<td>6202 Apps in Navigation Lab</td>
<td>1.00</td>
<td>4214 Lifetime Sports II: Golf</td>
</tr>
<tr>
<td>8211 Org Behavior/Ldrship</td>
<td>3.00</td>
<td>6201 Ships & Maritime Sys</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Class Year</th>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1322 Linear Circuits</td>
<td>4.00</td>
<td>1329 Digital Signal Process</td>
</tr>
<tr>
<td>1323 Antennas & Propagtn</td>
<td>4.00</td>
<td>1331 Automatic Control Systems</td>
</tr>
<tr>
<td>2394 Ethics</td>
<td>2.00</td>
<td>1420 Electromch Systems</td>
</tr>
<tr>
<td>3341 Probability Theory</td>
<td>3.00</td>
<td>4303 Personal Defense II</td>
</tr>
<tr>
<td>8313 Essentials of Economics</td>
<td>2.00</td>
<td>4304 Lifetime Sports III: Tennis</td>
</tr>
<tr>
<td>— Free Elective **</td>
<td>0.00-4.00</td>
<td>6301 Maritime Watch Officer</td>
</tr>
<tr>
<td>— Math/Sci Elective</td>
<td>3.00-4.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Class Year</th>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1422 Communication Systems</td>
<td>4.00</td>
<td>1436 Capstone Proj/EE II</td>
</tr>
<tr>
<td>1426 Capstone Proj/EE I</td>
<td>4.00</td>
<td>1493 Engineering Ethics</td>
</tr>
<tr>
<td>2398 Law</td>
<td>4.00</td>
<td>2485 Global Studies</td>
</tr>
<tr>
<td>— Engineering Elective</td>
<td>3.00-4.00</td>
<td>5444 Atmospherc & Mar Sci</td>
</tr>
<tr>
<td>— Free Elective **</td>
<td>0.00-4.00</td>
<td>6401 SelTps 100 Ton Master</td>
</tr>
<tr>
<td>— Physical Education</td>
<td>0.50</td>
<td>6402 SelTps 100 Ton Master Lab</td>
</tr>
<tr>
<td>— Engineering Elective</td>
<td>3.00-4.00</td>
<td></td>
</tr>
<tr>
<td>— Physical Education</td>
<td>See Note</td>
<td></td>
</tr>
</tbody>
</table>

Note: First class cadets must take 0.50 credit hours of health and physical education. As a graduation requirement, each cadet must pass or validate a minimum of six (6) academic credits in HPE.

Given the breadth of study inherent in the Academy's core curriculum, free electives are not required for graduation. Therefore they can be waived if at least 15 academic credits (not including Health and Physical Education credits) are taken each semester.
MECHANICAL ENGINEERING

The Mechanical Engineering (ME) major provides a solid foundation for service as a Coast Guard Officer, professional engineering practice, and further study in Mechanical Engineering or many other related fields. The major requirements develop the students’ ability to apply scientific principles in the design and analysis of mechanical and energy conversion systems. Students are challenged with design problems in most of the major courses that provide opportunities for developing creativity solving real-world problems. The program culminates with a hands-on capstone design project where teams of students use their acquired knowledge to design, build, and test a practical device. This program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

In addition to the common departmental mission and common Student Outcomes, the Mechanical Engineering Major produces graduates who have:

- an ability to apply multivariable calculus and differential equations to model, analyze, design, and realize physical systems, components, or processes in mechanical and thermal systems
- a preparedness to work professionally in both thermal and mechanical systems areas
- an ability to develop as leaders in the Coast Guard.

Mechanical Engineering Program Educational Objectives:
The Educational Objectives of the Mechanical Engineering Program are to produce graduates who, within 4-6 years of graduation:

1. Attain professional competence as an engineer in a U.S. Coast Guard Operational or Mission Support role.
2. Demonstrate evidence of intellectual growth in engineering such as engineering licensure, graduate education, publications and Coast Guard certifications and credentials
3. Attain recognition of professional accomplishment as a Coast Guard Officer in any field.

Acceptance into the Major
Acceptance requires attainment of a 2.00 average in all Mathematics, Science, and Engineering courses taken prior to the beginning of the 2/c year.

In addition, a grade of C or above is required in the following courses:

1118 Engineering Mechanics - Statics
1206 Mechanics of Materials
1208 Introduction to Mechanical Engineering Design
1211 Dynamics

If a student has validated a course, no grade for that course is included in the average. All grades for failed or repeated courses will be included in the acceptance into major GPA calculation.

I. Core Requirements:
Substitute Advanced Engineering Mathematics (3301) for Probability and Statistics (3213).

II. Major Requirements:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1118</td>
<td>Engineering Mech - Statics</td>
<td>1204</td>
<td>Engr Material Science</td>
</tr>
<tr>
<td>1206</td>
<td>Mech of Materials</td>
<td>1208</td>
<td>Intr to Mech Engr Desgn</td>
</tr>
<tr>
<td>1211</td>
<td>Dynamics</td>
<td>1321</td>
<td>Elect Circuits & Machines</td>
</tr>
<tr>
<td>1340</td>
<td>Fluid Mechanics</td>
<td>1351</td>
<td>Thermodynamics</td>
</tr>
<tr>
<td>1353</td>
<td>Thermal Systems Design</td>
<td>1370</td>
<td>Mechanisms</td>
</tr>
<tr>
<td>1437</td>
<td>Engineering Experimentation</td>
<td>1440</td>
<td>Machine Design</td>
</tr>
<tr>
<td>1446</td>
<td>Mechanical Engr Dsgn</td>
<td>1459</td>
<td>Heat Transfer</td>
</tr>
<tr>
<td>1460</td>
<td>Mod & Cntrl of Dyn Sys</td>
<td>1480</td>
<td>Design Project Management</td>
</tr>
<tr>
<td>3117</td>
<td>Calculus II</td>
<td>3211</td>
<td>Multivariable Calculus</td>
</tr>
<tr>
<td>3215</td>
<td>Differential Equations</td>
<td>3301</td>
<td>Adv Engineering Math</td>
</tr>
<tr>
<td>5162</td>
<td>Physics II</td>
<td>5206</td>
<td>Chemistry II</td>
</tr>
<tr>
<td></td>
<td>Major Area Elective</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Marine Engineering (1355) may be substituted for Thermal Systems Design (1353).

III. Major Area Electives:
The purpose of this elective is to offer students the opportunity to explore a wider variety of technical topics via a pre-existing course.

IV. Upper Division Courses:
All 13XX and 14XX level courses listed under Major Requirements above and Advanced Engineering Math (3301) are considered as Upper Division Courses.
Mechanical Engineering - General

Fall Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1118</td>
<td>Engineering Mech - Statics</td>
<td>3.00</td>
<td>0901</td>
<td>1.00</td>
</tr>
<tr>
<td>2111</td>
<td>College Composition</td>
<td>3.00</td>
<td>1104</td>
<td>3.00</td>
</tr>
<tr>
<td>213X</td>
<td>Cultural Perspectives</td>
<td>3.00</td>
<td>2163</td>
<td>3.00</td>
</tr>
<tr>
<td>3111</td>
<td>Calculus I</td>
<td>4.00</td>
<td>3117</td>
<td>4.00</td>
</tr>
<tr>
<td>4102</td>
<td>Prin Fitness/Wellness I</td>
<td>1.00</td>
<td>4103</td>
<td>1.00</td>
</tr>
<tr>
<td>4111</td>
<td>Swimming</td>
<td>0.25</td>
<td>4112</td>
<td>1.00</td>
</tr>
<tr>
<td>5102</td>
<td>Chemistry I</td>
<td>4.00</td>
<td>5162</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6101</td>
<td>4.00</td>
</tr>
</tbody>
</table>

* These courses may be scheduled during the Fall or Spring Semester.

Spring Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1118</td>
<td>Engineering Mech - Statics</td>
<td>3.00</td>
<td>0901</td>
<td>1.00</td>
</tr>
<tr>
<td>2111</td>
<td>College Composition</td>
<td>3.00</td>
<td>1104</td>
<td>3.00</td>
</tr>
<tr>
<td>213X</td>
<td>Cultural Perspectives</td>
<td>3.00</td>
<td>2163</td>
<td>3.00</td>
</tr>
<tr>
<td>3111</td>
<td>Calculus I</td>
<td>4.00</td>
<td>3117</td>
<td>4.00</td>
</tr>
<tr>
<td>4102</td>
<td>Prin Fitness/Wellness I</td>
<td>1.00</td>
<td>4103</td>
<td>1.00</td>
</tr>
<tr>
<td>4111</td>
<td>Swimming</td>
<td>0.25</td>
<td>4112</td>
<td>1.00</td>
</tr>
<tr>
<td>5102</td>
<td>Chemistry I</td>
<td>4.00</td>
<td>5162</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6101</td>
<td>4.00</td>
</tr>
</tbody>
</table>

Third Class Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1206</td>
<td>Mech of Materials</td>
<td>3.50</td>
<td>1204</td>
<td>4.00</td>
</tr>
<tr>
<td>3211</td>
<td>Multivariable Calculus</td>
<td>3.00</td>
<td>1208</td>
<td>3.00</td>
</tr>
<tr>
<td>4222</td>
<td>Professional Rescuer</td>
<td>2.00</td>
<td>1211</td>
<td>3.00</td>
</tr>
<tr>
<td>5266</td>
<td>Physics II</td>
<td>4.00</td>
<td>3215</td>
<td>3.00</td>
</tr>
<tr>
<td>6201</td>
<td>Ships & Maritime Sys</td>
<td>3.00</td>
<td>4204</td>
<td>0.25</td>
</tr>
<tr>
<td>6202</td>
<td>Apps in Navigation Lab</td>
<td>1.00</td>
<td>4214</td>
<td>0.25</td>
</tr>
<tr>
<td>8211</td>
<td>Org Behavior/Ldrship</td>
<td>3.00</td>
<td>5206</td>
<td>4.00</td>
</tr>
</tbody>
</table>

Second Class Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1321</td>
<td>Elec Cir & Machines</td>
<td>4.00</td>
<td>1440</td>
<td>4.00</td>
</tr>
<tr>
<td>1340</td>
<td>Fluid Mechanics</td>
<td>3.00</td>
<td>1459</td>
<td>3.00</td>
</tr>
<tr>
<td>1351</td>
<td>Thermodynamics</td>
<td>3.00</td>
<td>2394</td>
<td>2.00</td>
</tr>
<tr>
<td>1370</td>
<td>Mechanisms</td>
<td>4.00</td>
<td>3301</td>
<td>4.00</td>
</tr>
<tr>
<td>6301</td>
<td>Maritime Watch Officer</td>
<td>4.00</td>
<td>4303</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4304</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8313</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Free Elective **</td>
<td>3.00-4.00</td>
</tr>
</tbody>
</table>

First Class Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1353</td>
<td>Thermal Systems Design</td>
<td>3.00</td>
<td>1332</td>
<td>1.50</td>
</tr>
<tr>
<td>1437</td>
<td>Engr Experimentation</td>
<td>3.00</td>
<td>1446</td>
<td>4.00</td>
</tr>
<tr>
<td>1460</td>
<td>Mod & Ctrl of Dyn Sys</td>
<td>3.00</td>
<td>1493</td>
<td>1.00</td>
</tr>
<tr>
<td>1480</td>
<td>Design Project Mgt</td>
<td>4.00</td>
<td>2398</td>
<td>4.00</td>
</tr>
<tr>
<td>6401</td>
<td>SelTps 100 Ton Master</td>
<td>3.00</td>
<td>2485</td>
<td>3.00</td>
</tr>
<tr>
<td>6402</td>
<td>SelTps 100 Ton Master Lab</td>
<td>1.00</td>
<td>5444</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>Physical Education</td>
<td>0.50</td>
<td>Major Area Elective</td>
<td>3.00-4.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Physical Education</td>
<td>See Note</td>
</tr>
</tbody>
</table>

Note: First class cadets must take 0.50 credit hours of health and physical education. As a graduation requirement, each cadet must pass or validate a minimum of six (6) academic credits in HPE.

** Given the breadth of study inherent in the Academy's core curriculum, free electives are not required for graduation. Therefore they can be waived if at least 15 academic credits (not including Health and Physical Education credits) are taken each semester.
NAVAL ARCHITECTURE AND MARINE ENGINEERING

The Naval Architecture and Marine Engineering (NA&ME) major provides a strong undergraduate educational program in engineering, mathematics and the sciences. Graduates from this program are prepared for service as Coast Guard Officers across a wide spectrum of Coast Guard missions. The NA&ME program provides a solid educational basis for professional engineering practice in both the Coast Guard and commercial industry, and affords the graduate considerable latitude for postgraduate study in Naval Architecture, Marine Engineering, Mechanical Engineering and other related fields. This program emphasizes the development of the student’s ability to understand and apply engineering principles to the design and analysis of U.S. Coast Guard and commercial surface ships. Practical hands-on engineering applications blended with computer-aided design and analysis methods provide students with a coordinated mix of theoretical and practical engineering education.

The program emphasizes the solution of open-ended design problems, teamwork, creativity and effective communication. The NA&ME capstone design project presents the ultimate design challenge – the team-based design, development and integration of a conceptual ship design. This effort involves the design and analysis of the ship’s hull (form and structure), propulsion and auxiliary systems, general arrangements, stability assessment, structural design, etc. This year-long project is aligned with the strategic focus and needs of the Coast Guard and maritime industry. The major is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

In addition to the common Departmental mission and common Student Outcomes, the Naval Architecture and Marine Engineering program produces graduates who have:

- the ability to apply probability and statistical methods to naval architecture and marine engineering problems
- basic knowledge of fluid mechanics, dynamics, structural mechanics, materials properties, hydrostatics, and energy-propulsion systems in the context of marine vehicles
- familiarity with instrumentation appropriate to naval architecture and/or marine engineering

Naval Architecture and Marine Engineering Program Educational Objectives:
The U.S. Coast Guard Academy Naval Architecture and Marine Engineering program produces graduates who, within several years of graduation:

1. Demonstrate competency in professional practice in U.S. Coast Guard Naval Engineering or Marine Safety Engineering positions.
2. Demonstrate intellectual and professional growth such as post-graduate education, licensing, certification, and participation in pertinent professional societies.
3. Contribute NA&ME expertise to the solution of U.S. Coast Guard engineering challenges, specifically including the design, construction, safety, operation, and repair of U.S. Coast Guard and commercial vessels.

Acceptance into the Major

Acceptance into the Naval Architecture and Marine Engineering major requires attainment of a 2.00 average in the Mathematics, Science, and Engineering courses from the list below that have been taken prior to the beginning of the 2/c year. These courses include:

1118 Engineering Mechanics - Statics
1204 Engineering Material Science
1206 Mechanics of Materials
1211 Dynamics
1212 Analyl Methods Engr
3111 Calculus I
3117 Calculus II
or 3115 Calculus II (V)
3211 Multivariable Calculus
5102 Chemistry I
5206 Chemistry II
If a student has validated a course, no grade for that course is included in the average. Failed courses and their retake grades (prior to 2/c year) will both be included in the acceptance to major GPA calculation.

In addition, a grade of C or above is required in the following courses:

1118 Engineering Mechanics - Statics
1206 Mechanics of Materials
6201 Ships and Maritime Systems

I. Core Requirements:
No substitutions are required.

II. Major Requirements:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1118</td>
<td>Engineering Mech - Statics</td>
</tr>
<tr>
<td>1206</td>
<td>Mech of Materials</td>
</tr>
<tr>
<td>1212</td>
<td>Analytl Methods Engr</td>
</tr>
<tr>
<td>1340</td>
<td>Fluid Mechanics</td>
</tr>
<tr>
<td>1343</td>
<td>Applied Naval Arch</td>
</tr>
<tr>
<td>1355</td>
<td>Marine Engineering</td>
</tr>
<tr>
<td>1437</td>
<td>Engineering Experimentation</td>
</tr>
<tr>
<td>1444</td>
<td>Ship Design/Sys Intgr</td>
</tr>
<tr>
<td>1459</td>
<td>Heat Transfer</td>
</tr>
<tr>
<td>3211</td>
<td>Multivariable Calculus</td>
</tr>
<tr>
<td>5162</td>
<td>Physics II</td>
</tr>
</tbody>
</table>

____ Major Area Elective

III. Major Area Electives:
The purpose of this elective is to offer students the opportunity to explore a wider variety of technical topics via a pre-existing course. Any Engineering, Math, or Science course (12XX, 32XX, 52XX or above, not already taken) qualifies as a major area elective.

Below is a common list of major area electives:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1208</td>
<td>Intro Mech Eng Design</td>
</tr>
<tr>
<td>1225</td>
<td>Digital Cir/Comp Sys</td>
</tr>
<tr>
<td>1309</td>
<td>Environmental Eng I</td>
</tr>
<tr>
<td>1323</td>
<td>Antennas & Propagation</td>
</tr>
<tr>
<td>1370</td>
<td>Mechanisms</td>
</tr>
<tr>
<td>1420</td>
<td>Electromech Systems</td>
</tr>
<tr>
<td>1435</td>
<td>Intro Aerodynamics</td>
</tr>
<tr>
<td>1451</td>
<td>Introduction to Seakeeping</td>
</tr>
<tr>
<td>1460</td>
<td>Mech Cntrl of Dyn Sys</td>
</tr>
<tr>
<td>3221</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>3235</td>
<td>Comp Model Languages</td>
</tr>
<tr>
<td>3311</td>
<td>Advanced Calculus</td>
</tr>
<tr>
<td>3447</td>
<td>Linear Regression</td>
</tr>
<tr>
<td>5234</td>
<td>Marine Geochemistry</td>
</tr>
<tr>
<td>5302</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>5366</td>
<td>Astronomy</td>
</tr>
<tr>
<td>5415</td>
<td>Fate/Transport Chems Env</td>
</tr>
<tr>
<td>5445</td>
<td>Fisheries Management</td>
</tr>
</tbody>
</table>

Note: Courses specifically prohibited as major area electives include: 1218 Elec Engineering I, 1224 Intro Comp Prog and 1210 Materials for Civil and Construction Engineers
IV. Upper Division Courses:
 All 13XX and 14XX level courses required by the Major and one Major Area Elective (or approved substitutes for any of these courses) are considered as Upper Division Courses.
Naval Architecture and Marine Engineering - General

Fall Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourth Class Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0901 History of the USCG</td>
<td>1.00</td>
<td>1104 Intro to Computing</td>
<td>3.00</td>
</tr>
<tr>
<td>2111 College Composition</td>
<td>3.00</td>
<td>1118 Engineering Mech - Statics</td>
<td>3.00</td>
</tr>
<tr>
<td>2163 American Government</td>
<td>3.00</td>
<td>213X Cultural Perspectives</td>
<td>3.00</td>
</tr>
<tr>
<td>3111 Calculus I</td>
<td>4.00</td>
<td>3117 Calculus II</td>
<td>4.00</td>
</tr>
<tr>
<td>4102 Prin Fitness/Wellness I</td>
<td>1.00</td>
<td>4103 Personal Defense I</td>
<td>0.25</td>
</tr>
<tr>
<td>4111 Swimming</td>
<td>0.25</td>
<td>4112 Prin Fitness/Wellness II</td>
<td>1.00</td>
</tr>
<tr>
<td>5102 Chemistry I</td>
<td>4.00</td>
<td>5162 Physics I</td>
<td>4.00</td>
</tr>
<tr>
<td>6101 Fundamentals of Navigation</td>
<td>4.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Theses course may be scheduled during the Fall or Spring Semester.

Spring Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Third Class Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1206 Mech of Materials</td>
<td>3.50</td>
<td>1204 Engr Material Science</td>
<td>4.00</td>
</tr>
<tr>
<td>1212 Analytical Methods Engr</td>
<td>4.00</td>
<td>1211 Dynamics</td>
<td>3.00</td>
</tr>
<tr>
<td>4222 Professional Rescuer</td>
<td>2.00</td>
<td>1342 Prin of Naval Arch</td>
<td>3.00</td>
</tr>
<tr>
<td>5266 Physics II</td>
<td>4.00</td>
<td>3211 Multivariable Calculus</td>
<td>3.00</td>
</tr>
<tr>
<td>6201 Ships & Maritime Sys</td>
<td>3.00</td>
<td>4204 Lifetime Sports I: RQB</td>
<td>0.25</td>
</tr>
<tr>
<td>6202 Apps in Navigation Lab</td>
<td>1.00</td>
<td>4214 Lifetime Sports II: Golf</td>
<td>0.25</td>
</tr>
<tr>
<td>8211 Org Behavior/Ldrship</td>
<td>3.00</td>
<td>5206 Chemistry II</td>
<td>4.00</td>
</tr>
</tbody>
</table>

Second Class Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1321 Elec Cir & Machines</td>
<td>4.00</td>
<td>1355 Marine Engineering</td>
<td>3.50</td>
</tr>
<tr>
<td>1340 Fluid Mechanics</td>
<td>3.00</td>
<td>1356 Ship Structures</td>
<td>3.50</td>
</tr>
<tr>
<td>1343 Applied Naval Architecture</td>
<td>4.00</td>
<td>1459 Heat Transfer</td>
<td>3.00</td>
</tr>
<tr>
<td>1351 Thermodynamics</td>
<td>3.00</td>
<td>2394 Ethics</td>
<td>2.00</td>
</tr>
<tr>
<td>3213 Probability & Statistics</td>
<td>3.00</td>
<td>6301 Maritime Watch Officer</td>
<td>4.00</td>
</tr>
<tr>
<td>4303 Personal Defense II</td>
<td>0.25</td>
<td>8313 Essentials of Economics</td>
<td>2.00</td>
</tr>
<tr>
<td>4304 Lifetime Sports III: Tennis</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First Class Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1437 Engr Experimentation</td>
<td>3.00</td>
<td>1332 Prin Elec Comm Sys</td>
<td>1.50</td>
</tr>
<tr>
<td>1442 Prin of Ship Design</td>
<td>4.00</td>
<td>1444 Ship Dsgn/Sys Intgr</td>
<td>4.00</td>
</tr>
<tr>
<td>1453 Ship Propulsion Design</td>
<td>3.00</td>
<td>1493 Engineering Ethics</td>
<td>1.00</td>
</tr>
<tr>
<td>2398 Law</td>
<td>4.00</td>
<td>2485 Global Studies</td>
<td>3.00</td>
</tr>
<tr>
<td>____ Major Area Elective</td>
<td>3.00-4.00</td>
<td>5444 Atmospheric & Mar Sci</td>
<td>1.50</td>
</tr>
<tr>
<td>____ Physical Education</td>
<td>0.50</td>
<td>6401 SelTps 100 Ton Master</td>
<td>3.00</td>
</tr>
<tr>
<td>____</td>
<td></td>
<td>6402 SelTps 100 Ton Master Lab</td>
<td>1.00</td>
</tr>
<tr>
<td>____ Free Elective **</td>
<td>3.00-4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>____ Physical Education</td>
<td></td>
<td>See Note</td>
<td></td>
</tr>
</tbody>
</table>

Note: First class cadets must take 0.50 credit hours of health and physical education. As a graduation requirement, each cadet must pass or validate a minimum of six (6) academic credits in HPE.

** Given the breadth of study inherent in the Academy's core curriculum, free electives are not required for graduation. Therefore they can be waived if at least 15 academic credits (not including Health and Physical Education credits) are taken each semester.
GOVERNMENT

The Government (GOVT) major develops leaders for the 21st Century who think critically about global peoples, civil societies, and political systems and who possess the analytical abilities to explore their cultural, theoretical and jurisprudential foundations. Government Major Requirements offer a solid foundation in the political science discipline. A required concentration in either Politics, Policy, and Law; Security Studies; or International Relations enables future leaders to develop in depth understanding of how cultures, theories, institutions, and political processes influence the evolution of domestic, international, and global peoples, systems, and institutions. A required cognate concentration in the Humanities expands cadets’ understanding of the human condition and human societies. All cadets in the Government major are required to complete a minimum of one First Class seminar and a research-based capstone experience. Select cadets in the major may pursue advanced studies, senior theses, and advanced research projects involving original research related to their concentration. The Government major is an affiliate of the American Political Science Association and sponsors cadet membership in Pi Sigma Alpha, the National Political Science Honor Society. Government majors compete successfully for Fulbright, Truman, Gates, and other prestigious post-graduate fellowships.

Elements of Degree Completion for Government Major:

To successfully earn the degree of Government, a cadet must:

1. Complete all Major Requirement Courses with the grade of C or higher; including a 2400 level capstone requirement.
2. Complete 4 courses in Humanities Studies.
3. Complete 6 courses in one political science concentration area (Politics, Policy and the Law; International Relations; or Security Studies), at least one of which must be a 2400 level course.
4. Complete 2 courses offered by the Department outside the cadet’s primary concentration area.

Acceptance into the Major

Acceptance into the Government major is contingent upon meeting the following requirements:

A grade of C or higher in

- 2111 College Composition
- or 2121 The Art of Effective Writing
- 2163 American Government
- 2265 Comparative Politics
- 2269 National Security Policy
- 2293 Moral, Ethical and Political Philosophy*

* 2393 Moral and Ethical Philosophy may be substituted for 2293 with a grade of C+ or higher, recommendation of the course instructor, and approval of the Chief, Government Section.

I. Core Requirements:

Government majors should take Computer Problem Solving (2142) instead of Introduction to Computing (1104) although 1104 will be accepted as completing the 2142 requirement. Government majors will not be required to take Global Studies (2485).

II. Major Requirement Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2163</td>
<td>American Government</td>
</tr>
<tr>
<td>2265</td>
<td>Comparative Politics</td>
</tr>
<tr>
<td>2269</td>
<td>National Security Policy</td>
</tr>
<tr>
<td>2361</td>
<td>Political Theory</td>
</tr>
<tr>
<td>2392</td>
<td>Maritime Std: SelTpc *</td>
</tr>
<tr>
<td>24XX</td>
<td>Capstone Course</td>
</tr>
</tbody>
</table>

* 2467 Environmental Policy and Ethics; 2463 Maritime Policy and Strategy; 5445 Fisheries Management; 5441 Petroleum and Oil Spill Science; and 1309 Environmental Engineering I and other courses as designated by the Department Head may be used to fulfill the 2392 Maritime Studies: Selected Topics
requirement. These additionally designated courses will be listed as such in the “Concentration Requirement” offerings list promulgated each spring by the Department.

Capstone Course
All Government majors are required to successfully complete a research-based capstone requirement their First Class Year. Capstone options require a focused research paper or project in the selected Major Concentration. The capstone requirement may be fulfilled through an Advanced Research Project, Senior Thesis, Advanced Studies, or a 2400 level course specifically designated for that purpose. Cadets wishing to be considered for an Advanced Research Project, Senior Thesis or Advanced Studies experience will submit an “Academic Excellence Opportunity” application to the Government Section Chief prior to spring break of the cadet’s second class year. Descriptions of all capstone experiences appear below:

1. Advanced Research Projects (2499) are year-long original research projects for Coast Guard and interagency sponsors undertaken by Government major or interdisciplinary research teams aligned with the Major Concentrations. The Advanced Research Project option is normally limited to cadets with a GPA of 3.0 or higher in the Government Major. Cadets selected for the Advanced Research Project should register for the course during their last two semesters. The two semester sequence will satisfy the Capstone course requirement and fulfill one of the six Major Concentration requirements.

2. Senior Theses (2497) are one-semester individual research projects in the Major Concentration. Senior Theses require that the cadet submit a request memo routed through the academic advisor, thesis advisors and Department Head, which includes a/an: research area of interest, CGPA and GPA in the major, identification of two faculty members who agreed to sponsor the work (at least one of whom must be a permanent faculty member with terminal degree), and explanation of how the proposed thesis will fit into the cadet’s plan or study. Cadets will normally deliver the final product presentation of the Senior Thesis at Senior Symposium Day. This course will count as the cadet’s capstone. The Senior Thesis option is normally limited to cadets with a GPA of 3.0 or higher in the Government major.

3. Advanced Studies (2495) are one-semester experiences that either include development of a research project for delivery at a national student conference or that involve an internship in the spring semester. Cadets selected for this experience will be assigned to work with a Departmental Faculty Advisor. This course will count as the cadet’s capstone. The Advanced Studies option is normally limited to cadets with a GPA of 3.0 or higher in the Government major.

4. 2400-level courses - These courses, conducted as research seminars, are designated at the 2400 level, and will be identified as such in the “Concentration Requirements” list promulgated by the Department each academic year during Registration.

Humanities Studies Requirements
Government majors are required to take a minimum of four Required Humanities Studies courses.

1. All majors are required to take a Literature of Humanity and Conflict course (2324 or 2325)
2. World Language - All Government majors are required to demonstrate competency in a language other than English at the intermediate level. This is normally done by passing Spanish II or a higher level Spanish course. Cadets who wish to fulfill this requirement in another language through approved Academy exchange programs or through Connecticut College may petition to do so by memo through the Chief, English and World Languages Section and the Head, Department of Humanities. Specific details outlining the policies for doing so are available through the Department’s Lead Advisor.

3. After satisfying the two requirements above, cadets must fulfill the remaining Humanities requirements (i.e., 4 courses total) with History, Ethics, Philosophy, Literature, or Language offerings.

HR 2200 Level Courses (Third and Second Class Cadets Only)
- 2235 Spanish I
- 2236 Spanish I/II
- 2237 Spanish II
- 2241 Modern European Civilizations
- 2242 World Civilizations
HR 2300 Level Courses (Second and First Class Cadets Only)
- 2324 Literature of Humanity and Conflict: U.S. Latinos
- 2325 Literature of Humanity and Conflict: World Epics and Myths
- 2335 Spanish III
- 2337 Spanish IV
- 2341 The Civil War Era
- 2343 Latin Am Exp: Cultural App
- 2360 Selected Topics in Philosophy
- 2392 Maritime Std: SelTpc

HR 2400 Level Courses
- 2429 The Craft of Creative Writing
- 2439 Advanced Spanish

NOTE: Enrollment in Spanish courses is determined by placement, not class year. All Government majors should take the Spanish placement exam, available at: http://webcape.org/nwcregister.php, as early as possible during 4/c year to ensure proper placement. Transfers to the major must take the placement exam prior to formal application to the major. Spanish course placement determined by placement examination.

III. Major Concentration Descriptions and Requirements:
A minimum of six courses in one of three Major Concentrations in Politics, Policy and Law; International Relations; or Security Studies; including at least one 2400 level seminar, are required for all Government majors. Descriptions and requirements of each option appear below:

Politics, Policy, and Law (PPL) Concentration
The PPL concentration investigates how political systems are organized as well as how politics, policy processes, and the law shape and support those political systems. Special emphasis is placed on democracies as a form of civil society, government, and legal systems, and as manifestations of various political theories. The concentration analyzes the origins of democratic values, as well as contemporary questions about political participation, civic engagement, church-state relations, and the role of the military. Considered as well are how configurations of race, class, gender, religion, and ethnicity are pivotal to the roles, responsibilities and processes of the institutions of democratic governance. Courses in this concentration investigate the parameters of constitutional law, significant policy issues facing democracies, and the legal and cultural constructions of citizenship, including the practices which shape, transform, and destabilize democracies.

Requirements: All cadets are required to take a minimum of six courses in their concentration. No more than two may be taken at the 2200-level unless a third 2200-level course is taken as a free elective. All cadets must take at least one at the 2400-level course, which are reserved for first class only.

PPL 2200 Courses (Third and Second Class Cadets. *)
- 2267 American Congress
- 2272 Political Participation

PPL 2300 Courses (Second and First Class Cadets. *)
- 2362 Homeland Security Policy
- 2363 Contemporary Political Theory
- 2370 American Presidential Policy
- 2376 American Political Culture
- 2396 National Security Law
- 2397 Constitutional Law and Homeland Security

PPL 2400 Seminars (First Class Cadets only. Minimum of one seminar required.)
- 2463 Maritime Policy and Strategy**
- 2465 U.S. Military Policy
- 2467 Environmental Policy and Ethics**
- 2468 Religion, Politics, and Globalization
International Relations (IR) Concentration
The International Relations concentration provides a solid foundation in international affairs, comparative politics, and global political theory. Courses examine historic and contemporary challenges confronting global societies through the study of social, political, economic, and cultural transformations and forces in comparative perspective. Such changes are evaluated in light of their relationship to the dynamic roles of governments, regional and international organizations, and non-state actors. The concentration also focuses on the way institutions, social movements, and ethnic communities influence the international system and considers the roles that religion, race, nationalism, and gender play in shaping relationships among international actors. The International Relations concentration is designed to develop future leaders and citizens who understand today’s complex global environment, possess the cross-cultural competencies to function effectively within it, and assume leadership roles in shaping its future.

Requirements: All cadets are required to take a minimum of six courses in their concentration. No more than two may be taken at the 2200-level unless a third 2200-level course is taken as a free elective. All cadets must take at least one at the 2400-level course, which are reserved for first class only.

IR 2200 Courses (Third and Second Class cadets. *)
- 2272 Political Participation
- 2274 International Political Economy
- 2276 Contemporary U.S. Foreign Policy

IR 2300 Courses (Second and First Class cadets. *)
- 2338 Culture and Politics of Latin America
- 2352 Conflict Resolution, Diplomacy and Negotiation
- 2358 Politics of North Africa and the Middle East
- 2359 African Politics
- 2363 Contemporary Political Theory
- 2371 Area Studies
- 2373 The Religion and Political Philosophy of Islam
- 2374 Irregular War
- 2377 Politics of China
- 2378 Asia in World Affairs

IR 2400 Seminars (First Class Cadets only. Minimum of one seminar required.)
- 2463 Maritime Policy and Strategy**
- 2467 Environmental Policy and Ethics**
- 2468 Religion, Politics, and Globalization
- 2469 International Development
- 2472 Transnational Threats and Challenges
- 2494 International Law
- 2499 Advanced Research Project***

*Unless otherwise approved by the course instructor and cognizant Section Chief.
**If 2463 Maritime Policy and Strategy or 2467 Environmental Policy and Ethics is used to satisfy the Maritime Studies: Selected Topics requirement, it cannot be counted as a Concentration Requirement.
***2499 Advanced Research Project is a two semester course. One semester may be used as a Concentration Requirement. The other would fulfill the Capstone requirement.
Advanced Research Project is a two semester course. One semester may be used as a Concentration Requirement. The other would fulfill the Capstone requirement.

Security Studies (SS) Concentration
The Security Studies concentration challenges future leaders to develop a broad conceptualization of security—from its traditional state-centric interpretation to a 21st century view which includes global, homeland, human, and environmental security threats and challenges. The concentration fosters development of a nuanced understanding of both the inter-relationship and core differences among individual, national, and international levels of security. It emphasizes the causes and prevention of war, protection of the homeland, military operations, security of maritime systems, intelligence studies and grand strategy. The Security Studies concentration enhances understanding of the wide range of security challenges and develops critical thinking abilities essential to analysis of security policy processes and outcomes.

Requirements: All cadets are required to take a minimum of six courses in their concentration. No more than two may be taken at the 2200-level unless a third 2200-level course is taken as a free elective. All cadets must take at least one at the 2400-level course, which are reserved for first class only.

SS 2200 Courses (Third and Second Class Cadets. *)
- 2276 Contemporary U.S. Foreign Policy
- 2281 Intelligence and Democracy

SS 2300 Courses (Second and First Class Cadets. *)
- 2352 Conflict Resolution, Diplomacy and Negotiation
- 2362 Homeland Security Policy
- 2371 Area Studies
- 2374 Irregular War
- 2375 Strategic Intelligence: Collection and Analysis
- 2396 National Security Law
- 2397 Constitutional Law and Homeland Security

SS 2400 Seminars (First Class Cadets only. Minimum of one seminar required.)
- 2463 Maritime Policy and Strategy*
- 2465 U.S. Military Policy
- 2467 Environmental Policy and Ethics**
- 2468 Religion, Politics, and Globalization
- 2469 International Development
- 2472 Transnational Threats and Challenges
- 2494 International Law
- 2499 Advanced Research Project***

*Unless otherwise approved by the course instructor and cognizant Section Chief.
**If 2463 Maritime Policy and Strategy or 2467 Environmental Policy and Ethics is used to satisfy the Maritime Studies: Selected Topics requirement, it cannot be counted as a Concentration Requirement.
***2499 Advanced Research Project is a two semester course. One semester may be used as a Concentration Requirement. The other would fulfill the Capstone requirement.

Free Electives
Two free electives enable Government majors to pursue cognate interests in other CGA academic disciplines or to develop greater depth or breadth within the Government major including Humanities courses.

Special Academic Opportunities
Select Second Class Cadets may compete for:
a. The Service Academy Exchange program, undertaking one semester of study at the U.S. Military Academy, U.S. Naval Academy, or U.S. Air Force Academy.

Select First Class Cadets may compete for:

a. The Fund for American Studies summer study abroad programs in democracy and development.
b. The Washington Internship Program administered by the Department of Humanities which offers internships in legislative, executive, and intelligence agencies.
c. Capstone opportunities, including Advanced Research Projects, Advanced Studies, and Senior Thesis options.

Exceptions to normal course of study

1. Validation Policy. No Major Requirement Courses or Concentration Requirements in the Government major may be validated unless all of the following requirements are met.
 a. Completion of a course with a grade of “B” or higher from an accredited four-year institution of higher education offering a political science or government major.
 b. Validation by the USCGA course coordinator and Chief, Government Section that the course meets USCGA Government major learning objectives and graded requirements equivalency.
 c. Approval of the Head, Department of Humanities.

2. Advanced Placement Credit. Credit for Advanced Placement courses is not available for Government Major or Concentration Requirements.

IV. Upper Division Courses:

Upper Division courses are defined as those listed under Major Requirement Courses above and courses required for completion of one of the three Major Concentrations: PP&L, SS or IR.
Government - General

Fall Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0901</td>
<td>History of the USCG</td>
<td>1.00 *</td>
</tr>
<tr>
<td>2111</td>
<td>College Composition</td>
<td>3.00 *</td>
</tr>
<tr>
<td>2163</td>
<td>American Government</td>
<td>3.00</td>
</tr>
<tr>
<td>3111</td>
<td>Calculus I</td>
<td>4.00</td>
</tr>
<tr>
<td>4102</td>
<td>Prin Fitness/Wellness I</td>
<td>1.00</td>
</tr>
<tr>
<td>4111</td>
<td>Swimming</td>
<td>0.25</td>
</tr>
<tr>
<td>5102</td>
<td>Chemistry I</td>
<td>4.00</td>
</tr>
<tr>
<td>8115</td>
<td>Macroeconomic Prin</td>
<td>3.00 *</td>
</tr>
</tbody>
</table>

* These courses may be scheduled during the Fall or Spring Semester.

Spring Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>213X</td>
<td>Cultural Perspectives</td>
<td>3.00 *</td>
</tr>
<tr>
<td>2142</td>
<td>Comp Prob Solving</td>
<td>3.00</td>
</tr>
<tr>
<td>3213</td>
<td>Probability & Statistics</td>
<td>3.00</td>
</tr>
<tr>
<td>4103</td>
<td>Personal Defense I</td>
<td>0.25</td>
</tr>
<tr>
<td>4112</td>
<td>Prin Fitness/Wellness II</td>
<td>1.00</td>
</tr>
<tr>
<td>5162</td>
<td>Physics I</td>
<td>4.00</td>
</tr>
<tr>
<td>6101</td>
<td>Fndmntls of Navigation</td>
<td>4.00 *</td>
</tr>
</tbody>
</table>

** These courses may be taken during the Fall or Spring Semester depending on which Lab Science (5206 or 5266) is requested.

Third Class Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2269</td>
<td>National Security Policy</td>
<td>3.00</td>
</tr>
<tr>
<td>2293</td>
<td>Moral/Ethcl/Pol Phil</td>
<td>3.00</td>
</tr>
<tr>
<td>4222</td>
<td>Professional Rescuer</td>
<td>2.00</td>
</tr>
<tr>
<td>52X6</td>
<td>Lab Science</td>
<td>4.00 **</td>
</tr>
<tr>
<td>6202</td>
<td>Apps in Navigation Lab</td>
<td>1.00 **</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>22XX</td>
<td>Concentration Reqrmt 1</td>
<td>3.00</td>
</tr>
<tr>
<td>___</td>
<td>Humanities Reqrmt 1</td>
<td>3.00-4.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>22XX</td>
<td>Concentration Reqrmt 2</td>
<td>3.00</td>
</tr>
<tr>
<td>___</td>
<td>Humanities Reqrmt 2</td>
<td>3.00-4.00</td>
</tr>
</tbody>
</table>

** These courses may be scheduled during the Fall or Spring Semester depending on which Lab Science (5206 or 5266) is requested.

Second Class Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2355</td>
<td>Public Policymaking</td>
<td>3.00</td>
</tr>
<tr>
<td>2367</td>
<td>International Relations</td>
<td>3.00</td>
</tr>
<tr>
<td>2398</td>
<td>Law</td>
<td>4.00</td>
</tr>
<tr>
<td>2392</td>
<td>Maritime Std: SelTpc</td>
<td>3.00</td>
</tr>
<tr>
<td>4303</td>
<td>Personal Defense II</td>
<td>0.25</td>
</tr>
<tr>
<td>4304</td>
<td>Lifetime Sports III: Tennis</td>
<td>0.25</td>
</tr>
<tr>
<td>22/3XX</td>
<td>Concentration Reqrmt 3</td>
<td>3.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2361</td>
<td>Political Theory</td>
<td>3.00</td>
</tr>
<tr>
<td>6301</td>
<td>Maritime Watch Officer</td>
<td>4.00</td>
</tr>
<tr>
<td>22/3XX</td>
<td>Concentration Reqrmt 4</td>
<td>3.00</td>
</tr>
<tr>
<td>___</td>
<td>Humanities Reqrmt 3</td>
<td>3.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>23/24XX</td>
<td>NC Requirement 2</td>
<td>3.00</td>
</tr>
<tr>
<td>___</td>
<td>Free Elective</td>
<td>3.00-4.00</td>
</tr>
<tr>
<td>___</td>
<td>Physical Education</td>
<td>0.50</td>
</tr>
</tbody>
</table>

First Class Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>6401</td>
<td>SelTps 100 Ton Master</td>
<td>3.00</td>
</tr>
<tr>
<td>6402</td>
<td>SelTps 100 Ton Master Lab</td>
<td>1.00</td>
</tr>
<tr>
<td>23XX</td>
<td>Concentration Reqrmt 5</td>
<td>3.00</td>
</tr>
<tr>
<td>23/24XX</td>
<td>NC Requirement 6</td>
<td>3.00</td>
</tr>
<tr>
<td>___</td>
<td>Humanities Reqrmt 4</td>
<td>3.00</td>
</tr>
<tr>
<td>___</td>
<td>Free Elective</td>
<td>3.00-4.00</td>
</tr>
<tr>
<td>___</td>
<td>Physical Education</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Note: First class cadets must take 0.50 credit hours of health and physical education. As a graduation requirement, each cadet must pass or validate a minimum of six (6) academic credits in HPE.
The Operations Research and Computer Analysis (ORCA) major provides graduates a background in mathematics, probability, statistics, deterministic and non-deterministic modeling, and computer programming and analysis. The primary focus is to enable our cadets to conceptualize and describe reality using the tools of mathematics and statistics, analyze possible models and solutions, use appropriate computer technology, apply these skills to specific Coast Guard problems, and effectively communicate solutions. The study of Operations Research and Computer Analysis highlights the means by which mathematics and computers can be used to analyze complex problems and improve decision-making.

While the Department of Mathematics emphasizes the practical application of mathematics to everyday problems, the critical component of the program continues to be the understanding and applications of mathematical concepts. In addition to the courses concentrating on the tools of operations research, the Department of Mathematics offers numerous other courses covering the fundamentals of mathematical reasoning and analysis. Our graduates have a strong background in computer programming and data analysis as well as experience utilizing a computer algebra system, along with other statistics, forecasting, optimization, and simulation packages.

One of the highlights of the Operations Research and Computer Analysis major is the capstone course, Operations Analysis (3471). In this course, each first class cadet puts into practice what they have learned in the classroom throughout their 4-year education in operations research. The cadets work as consulting teams on projects submitted by various Coast Guard units. The teams work with project sponsors to carefully define the problem under investigation and use appropriate operations research techniques to prepare mathematically supported solutions. In addition to providing consulting benefits to the Coast Guard, these projects strengthen the connectivity between the Academy, the service, and the field of operations research. Recent cadet projects as part of this capstone experience include:

- District 17 Aviation Search and Rescue Response Threat Map
- Integrated Cross-Border Maritime Law Enforcement Operational Scheduling
- Coast Guard Enlisted Career Tracker
- International Ice Patrol: A Probability Map to Minimize Risk for Mariners
- Arctic Maritime Resource Frontier Risk and Capacity Evaluation
- Analysis for Detection of Illegal Fishing Practices
- Coast Guard Boat Station Mission and Environmental Relevancy Decision Support Tool
- USCG Air Station Atlantic City Training Simulation
- USCG Active Duty Officer Promotion Flow Analysis
- Self-Propelled Semi-Submersible Detection Simulation
- District Seven Fast Response Cutter (FRC) Homeport Analysis

The Department of Mathematics sponsors a Summer Internship Program for first class cadets who have displayed exceptional abilities both academically and militarily. This program provides an opportunity for the educational and professional growth of these cadets as they perform operations research work for the Coast Guard or other government agencies. Recent internships have been offered at: the National Security Agency, the Coast Guard Office of Requirements and Analysis (CG-771), the Coast Guard Office of Workforce Forecasting and Analysis (CG-12A), the Coast Guard Office of Forces (CG-711), and Massachusetts Institute of Technology (MIT) Lincoln Labs.

In support of the United States Coast Guard Academy’s Statement of Vision and Missions, Guiding Principles, and Shared Learning Outcomes, the Department of Mathematics’ outcomes include producing graduates who:

- understand and demonstrate proficiency in all mathematics coursework required for their CGA degree;
- effectively communicate mathematical information in many contexts including reading, writing, listening, and presenting;
- interpret, critically analyze, model, and provide solutions to relevant problems that may involve mathematics, data analysis, software applications, or mathematical proofs;
- appreciate and practice effective team membership and leadership, constructive assessment of self and others, and lifelong learning;
and producing ORCA graduates who also
• appreciate and practice the use of mathematics and operations research techniques to improve
 processes and solve applied problems for the Coast Guard.

Acceptance into the Major
Acceptance requires attainment of a 2.00 average in all courses taken in the Department of Mathematics
prior to the 2/c year. If a course is retaken, both the original and the retake credits/grades are included in the
Acceptance into the Major GPA calculation. Late transfers into the major may receive provisional
acceptance until sufficient math classes on the ORCA general schedule for third class year have been taken
to assess mathematical aptitude.

I. Core Requirements:
 Substitute Probability Theory (3341) for Probability and Statistics (3213).

II. Major Requirements:
 All Operations Research and Computer Analysis Upper Division Courses listed below in section IV
 along with 3117 Calculus II and 3211 Multivariable Calculus. In addition, 3470 Operations Analysis
 Preparation is required unless a waiver is granted in writing by the Mathematics Department Head. If a
course is retaken, both the original and the retake credits/grades are included in the Upper Division
GPA calculation. If more than one Major Area Elective is taken, the one with the highest grade earned
is used for the Upper Division GPA calculation.

III. Major Area Electives:
 Courses which emphasize the application or theory of mathematics, statistics, computer analysis or
 operations research. Such courses are typically taken in the Department of Mathematics and must be
documented and approved by the Mathematics Department Head.

IV. Upper Division Courses:
 3221 Linear Algebra 3231 Linear Optimization
 3235 Comp Model Languages 3236 Information Systems
 3237 Discrete Mathematics 3333 Ntwrk & Nonlin Optim
 3334 Intermediate Det Models 3337 Algorithms w/Applications
 3341 Probability Theory 3343 Mathematical Statistics
 3351 Probability Models 3447 Linear Regression
 3453 Decision Models 3463 Simulation w/Risk Analysis
 3471 Operations Analysis ____ Major Area Elective (2)
Operations Research and Computer Analysis—General

Fall Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1104</td>
<td>Intro to Computing</td>
<td>3.00</td>
<td>0901</td>
<td>History of the USCG</td>
<td>1.00</td>
</tr>
<tr>
<td>2111</td>
<td>College Composition</td>
<td>3.00</td>
<td>213X</td>
<td>Cultural Perspectives</td>
<td>3.00</td>
</tr>
<tr>
<td>2163</td>
<td>American Government</td>
<td>3.00</td>
<td>3171</td>
<td>Calculus II</td>
<td>4.00</td>
</tr>
<tr>
<td>3111</td>
<td>Calculus I</td>
<td>4.00</td>
<td>4103</td>
<td>Personal Defense I</td>
<td>0.25</td>
</tr>
<tr>
<td>4102</td>
<td>Prin Fitness/Wellness I</td>
<td>1.00</td>
<td>4112</td>
<td>Prin Fitness/Wellness II</td>
<td>1.00</td>
</tr>
<tr>
<td>4111</td>
<td>Swimming</td>
<td>0.25</td>
<td>5162</td>
<td>Physics I</td>
<td>4.00</td>
</tr>
<tr>
<td>5102</td>
<td>Chemistry I</td>
<td>4.00</td>
<td>6101</td>
<td>Fndmntls of Navigation</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8115</td>
<td>Macroeconomic Prin</td>
<td>3.00</td>
</tr>
</tbody>
</table>

* These courses may be scheduled during the Fall or Spring Semester.

Spring Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>3211</td>
<td>Multivariable Calculus</td>
<td>3.00</td>
</tr>
<tr>
<td>3221</td>
<td>Linear Algebra</td>
<td>3.00</td>
</tr>
<tr>
<td>3235</td>
<td>Comp Model Languages</td>
<td>3.00</td>
</tr>
<tr>
<td>4204</td>
<td>Lifetime Sports I: RQB</td>
<td>0.25</td>
</tr>
<tr>
<td>4214</td>
<td>Lifetime Sports II: Golf</td>
<td>0.25</td>
</tr>
<tr>
<td>52X6</td>
<td>Lab Science</td>
<td>4.00</td>
</tr>
<tr>
<td>8211</td>
<td>Org Behavior/Ldrship</td>
<td>3.00</td>
</tr>
</tbody>
</table>

** These courses may be taken during the Fall or Spring Semester depending on which Lab Science (5206 or 5266) is requested.

Third Class Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>3211</td>
<td>Multivariable Calculus</td>
<td>3.00</td>
</tr>
<tr>
<td>3221</td>
<td>Linear Algebra</td>
<td>3.00</td>
</tr>
<tr>
<td>3235</td>
<td>Comp Model Languages</td>
<td>3.00</td>
</tr>
<tr>
<td>4204</td>
<td>Lifetime Sports I: RQB</td>
<td>0.25</td>
</tr>
<tr>
<td>4214</td>
<td>Lifetime Sports II: Golf</td>
<td>0.25</td>
</tr>
<tr>
<td>52X6</td>
<td>Lab Science</td>
<td>4.00</td>
</tr>
<tr>
<td>8211</td>
<td>Org Behavior/Ldrship</td>
<td>3.00</td>
</tr>
</tbody>
</table>

** These courses may be taken during the Fall or Spring Semester depending on which Lab Science (5206 or 5266) is requested.

Second Class Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2398</td>
<td>Law</td>
<td>4.00</td>
</tr>
<tr>
<td>3333</td>
<td>Network & Nonlin Optim</td>
<td>3.00</td>
</tr>
<tr>
<td>3337</td>
<td>Algorithms w/Applications</td>
<td>3.00</td>
</tr>
<tr>
<td>3341</td>
<td>Probability Theory</td>
<td>3.00</td>
</tr>
</tbody>
</table>

** Major Area Elective 3.00-4.00

First Class Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2485</td>
<td>Global Studies</td>
<td>3.00</td>
</tr>
<tr>
<td>3447</td>
<td>Linear Regression</td>
<td>3.00</td>
</tr>
<tr>
<td>3453</td>
<td>Decision Models</td>
<td>3.00</td>
</tr>
<tr>
<td>3463</td>
<td>Simulatn w/Risk Anlys</td>
<td>3.00</td>
</tr>
<tr>
<td>3470</td>
<td>Operations Analysis Prep</td>
<td>1.00</td>
</tr>
</tbody>
</table>

** Free Elective *** 3.00-4.00

** Major Area Elective 3.00-4.00

Note

First class cadets must take 0.50 credit hours of health and physical education. As a graduation requirement, each cadet must pass or validate a minimum of six (6) academic credits in HPE.

*** Given the breadth of study inherent in the Academy's core curriculum, free electives are not required for graduation. Therefore they can be waived if at least 15 academic credits (not including Health and Physical Education credits) are taken each semester.
MARINE AND ENVIRONMENTAL SCIENCES

The Marine and Environmental Sciences (MES) major focuses on physical, chemical, and biological aspects of the marine environment. Specific topics include meteorology; wind-driven and deep ocean circulation; estuarine processes; marine geochemistry; chemistry of oil; the safe transport and storage of hazardous materials; survey of marine life, biological productivity; fisheries management; and human influence on the marine environment. Laboratories, which include field studies on the Thames River in the Marine Science boat, allow students to gain hands-on experience in weather forecasting, computer modeling of the wind-driven ocean circulation, collecting and analyzing oceanographic data, chemical identification of unknown compounds, identification of marine organisms, analysis of commercial fishing techniques and use of geospatial technologies to study the marine environment. Applications of theory to solving Coast Guard problems are emphasized throughout the curriculum. Courses are primarily quantitative in nature and require a good understanding of physics, chemistry, and calculus.

In addition to the Academy’s Shared Learning Outcomes, the Marine and Environmental Sciences Program Educational Objectives include producing graduates who:

1. Are Knowledgeable and Competent
 - Demonstrate scientific and technical proficiency
 - Synthesize information from data, knowledge from information, and wisdom from knowledge and experience

2. Think and Are Aware
 - Exhibit critical and other forms of thinking
 - Be aware of self, situation, and surroundings (changing conditions)

3. Communicate Effectively
 - Communicate results of one’s work, as an oral presentation, scientific poster presentation, and technical or non-technical writing

4. Are Leaders and Role Models
 - Demonstrate Coast Guard Core Values
 - Exhibit character and integrity
 - Be self-sufficient and self-confident

Acceptance into the Major

Acceptance requires attainment of a 2.00 average in the following courses:

- 3111 Calculus I
- 3117 Calculus II
- 3211 Multivariable Calculus
- 3215 Differential Equations
- 5102 Chemistry I
- 5162 Physics I
- 5206 Chemistry II
- 5232 Marine Biology
- 5234 Marine Geochemistry
- 5238 Physical Oceanography
- 5240 Meteorology
- 5266 Physics II

If a student has validated a course, no grade for that course is included in the average. For failed courses only their retake grades will be included in the acceptance to major GPA calculation. A passing grade must be earned for all courses unless validated.

I. Core Requirements:

 Marine and Environmental Sciences majors will not be required to take Atmospheric and Marine Sciences (5444).
II. Major Requirements:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3117</td>
<td>Calculus II</td>
<td></td>
</tr>
<tr>
<td>3215</td>
<td>Differential Equations</td>
<td></td>
</tr>
<tr>
<td>3234</td>
<td>Marine Geochemistry</td>
<td></td>
</tr>
<tr>
<td>5240</td>
<td>Meteorology</td>
<td></td>
</tr>
<tr>
<td>5230</td>
<td>Geospatial Sciences I</td>
<td></td>
</tr>
<tr>
<td>5445</td>
<td>Fisheries Management</td>
<td></td>
</tr>
<tr>
<td>5211</td>
<td>Multivariable Calculus</td>
<td></td>
</tr>
<tr>
<td>5232</td>
<td>Marine Biology</td>
<td></td>
</tr>
<tr>
<td>5238</td>
<td>Physical Oceanography</td>
<td></td>
</tr>
<tr>
<td>5266</td>
<td>Physics II</td>
<td></td>
</tr>
<tr>
<td>5441</td>
<td>Petroleum and Oil Spill Science</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MES Electives (2)</td>
<td></td>
</tr>
</tbody>
</table>

III. Major Area Electives:

Complete courses for two of the following three subject areas:

- **Physical**
 - 5350 Ocean Dynamics
 - 5352 Waves and Tides
 - 5436 Coastal Oceanography

- **Chem-Environmental**
 - 5302 Organic Chemistry I
 - 5312 Analytical Methods in Chemistry
 - 5406 Physical Chemistry

- **Bio-Environmental**
 - 5334 Fisheries Biology
 - 5342 Biological & Chemical Oceanography
 - 5443 Marine Ecology

IV. Upper Division Courses:

Upper Division courses are defined as the six listed under two of the three Major Area Elective subject areas plus 5330, Geospatial Sciences I, 5441, Petroleum and Oil Spill Science, and 5445, Fisheries Management. Additional electives taken in the Department of Science are not included in this calculation.
<table>
<thead>
<tr>
<th>Fourth Class Year</th>
<th>Credits</th>
<th>Spring Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2111</td>
<td>College Composition 3.00</td>
<td>0901</td>
<td>History of the USCG 1.00</td>
</tr>
<tr>
<td>2163</td>
<td>American Government 3.00</td>
<td>1104</td>
<td>Intro to Computing 3.00</td>
</tr>
<tr>
<td>3111</td>
<td>Calculus I 4.00</td>
<td>213X</td>
<td>Cultural Perspectives 3.00</td>
</tr>
<tr>
<td>4102</td>
<td>Prin Fitness/Wellness I 1.00</td>
<td>3117</td>
<td>Calculus II 4.00</td>
</tr>
<tr>
<td>4111</td>
<td>Swimming 0.25</td>
<td>4103</td>
<td>Personal Defense I 0.25</td>
</tr>
<tr>
<td>5102</td>
<td>Chemistry I 4.00</td>
<td>4112</td>
<td>Prin Fitness/Wellness II 1.00</td>
</tr>
<tr>
<td>6101</td>
<td>Fndmntls of Navigation 4.00 *</td>
<td>5162</td>
<td>Physics I 4.00</td>
</tr>
<tr>
<td></td>
<td>5206</td>
<td>Chemistry II 4.00</td>
<td></td>
</tr>
</tbody>
</table>

* These courses may be scheduled during the Fall or Spring Semester.

<table>
<thead>
<tr>
<th>Third Class Year</th>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>3211</td>
<td>Multivariable Calculus 3.00</td>
<td>3215</td>
</tr>
<tr>
<td>4204</td>
<td>Lifetime Sports I: RQB 0.25</td>
<td>4222</td>
</tr>
<tr>
<td>4214</td>
<td>Lifetime Sports II: Golf 0.25</td>
<td>5234</td>
</tr>
<tr>
<td>5232</td>
<td>Marine Biology 4.00</td>
<td>5238</td>
</tr>
<tr>
<td>5240</td>
<td>Meteorology 4.00</td>
<td>6201</td>
</tr>
<tr>
<td>5266</td>
<td>Physics II 4.00</td>
<td>8115</td>
</tr>
<tr>
<td>6202</td>
<td>Apps in Navigation Lab 1.00</td>
<td></td>
</tr>
<tr>
<td>8211</td>
<td>Org Behavior/Ldrship 3.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Class Year</th>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2398</td>
<td>Law 4.00</td>
<td>2394</td>
</tr>
<tr>
<td>3213</td>
<td>Probability & Statistics 3.00</td>
<td>4303</td>
</tr>
<tr>
<td>5330</td>
<td>Geospatial Sciences I 3.50</td>
<td>4304</td>
</tr>
<tr>
<td></td>
<td>Major Area Elective 3.50-4.00</td>
<td>6301</td>
</tr>
<tr>
<td></td>
<td>Major Area Elective 4.00</td>
<td>MES Elective 3.00-4.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Major Area Elective 3.50-4.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Major Area Elective 4.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Class Year</th>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2485</td>
<td>Global Studies 3.00</td>
<td>1332</td>
</tr>
<tr>
<td>6401</td>
<td>SelTps 100 Ton Master 3.00</td>
<td>5441</td>
</tr>
<tr>
<td></td>
<td>Major Area Elective 3.00-4.00</td>
<td>5445</td>
</tr>
<tr>
<td></td>
<td>Major Area Elective 3.00-3.50</td>
<td>5493</td>
</tr>
<tr>
<td></td>
<td>Free Elective 3.00-4.00</td>
<td>6402</td>
</tr>
<tr>
<td></td>
<td>Physical Education 0.50</td>
<td>MES Elective 3.00-4.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Free Elective 3.00-4.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physical Education See Note</td>
</tr>
</tbody>
</table>

Note: First class cadets must take 0.50 credit hours of health and physical education. As a graduation requirement, each cadet must pass or validate a minimum of six (6) academic credits in HPE.
MANAGEMENT

The Management (MGT) degree program prepares students to become effective managers and adept stewards of Coast Guard fiscal, human, and information resources. Students receive a broad undergraduate education in all major business disciplines: accounting, behavioral/organizational science, finance, human resource management, economics, management, marketing, operations management, management of information systems, quantitative methods, and strategic management. The program of study culminates with an engaging capstone experience where teams of students are paired with Coast Guard, non-profit and other public-sector clients with a management problem. Students learn the fundamentals of management consulting and draw upon their knowledge of the major business disciplines to scope, analyze, and deliver a management consulting project with a real-world impact. This degree program is accredited by AACSB International – the Association to Advance Collegiate Schools of Business.

The following are the learning outcomes for graduates of the management degree program:

- **Leadership Abilities:** Management graduates are leaders. Graduates shall be military and civilian leaders of character who understand and apply sound leadership principles and competencies. This includes the ability to direct, develop, and evaluate diverse groups; to function effectively and ethically as a leader, follower, facilitator or member of a team; and to conduct constructive assessment of self and others.

- **Acquire, Integrate, and Expand Business Knowledge:** Management graduates are managers. Graduates shall understand and demonstrate the following business competencies: (a) accounting, (b) economics, (c) management, (d) quantitative analysis, (e) finance, (f) marketing, (g) international issues, (h) legal and social environment issues, and (i) management of information systems. Graduates shall have developed the motivations and skills for “lifelong learning.” Graduates shall be able to create a working conceptual framework that lends itself to continued expansion. To accomplish this, graduates shall be able to efficiently access a broad range of information sources, locate and interpret desired data reliably, employ appropriate technology, and integrate knowledge.

- **Communication Effectiveness:** Management graduates are good listeners. Graduates shall be able to: write clearly, concisely, persuasively and grammatically; prepare and deliver well-organized and polished oral presentations; read and understand a variety of written materials; listen thoughtfully to oral arguments; respect diverse opinions; and formulate reasoned alternatives and responses.

- **Critical Thinking Ability:** Management graduates integrate and apply their leadership ability, business competency, and effective communication skills. Graduates shall be able to accomplish complex tasks in a broad range of contexts by applying the basic skills of critical analysis, systems thinking, quantitative reasoning, risk management, creative problem solving, and value-based decision-making.

Acceptance into the Major

Acceptance requires attainment of a grade of C or above in the following courses:

- 2111 College Composition or Equivalent
- 3213 Probability and Statistics
- 8211 Organizational Behavior and Leadership
- 8246 Financial Accounting

I. Core Requirements:

Management majors should take Computer Problem Solving (2142) instead of Introduction to Computing (1104) although 1104 will be accepted as completing the 2142 requirement.

II. Major Requirements:

Major Area Requirements are in addition to the Management-related courses required as part of the core curriculum.
III. Major Area Electives:
Select four of the following courses as Major Area Electives. Note: Other courses may be accepted as Major Area Electives if explicitly approved in writing by the Department Head prior to the beginning of the semester in which taken.

1224 Intro to Comp Prog*
1328 Software Engineering*
8413 Managerial Economics
8419 Info Technology in Orgs*
8425 Global Business & Econ
8439 Diversity & Leadership
8442 Public Sector Economics
8447 Auditing & IntrnlCtrl
8449 Select Topics in IS/DS*
8453 Systems Analysis & Design*
8460 Cost Accounting
8468 Drctd Studies in Fin/Acct/Ec
8470 Directed Studies in IS/DS*

* Cadets who wish to pursue graduate studies in Information Systems are encouraged to take Intro to Computer Programming (1224) as a Major Area Elective in the fall semester of their 1/c year and Software Engineering (1328) as an MAE in the spring semester of their 1/c year. These students should take either Information Technology in Organizations (8419) or Computer Communications and Networking (1325), plus one more of the other IS related MAE’s marked with an asterisk as a free elective. This sequence of courses fulfills the prerequisite undergraduate requirements as suggested by the Special Interest Group for Management Information Systems (SIGMIS).

IV. Upper Division Courses:
All 83XX and 84XX level courses listed under Major Requirements above and any four Major Area Electives are considered as Upper Division Courses.
Management - General

Fall Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2111</td>
<td>College Composition</td>
<td>3.00</td>
<td>0901</td>
<td>History of the USCG</td>
<td>1.00</td>
</tr>
<tr>
<td>2163</td>
<td>American Government</td>
<td>3.00</td>
<td>213X</td>
<td>Cultural Perspectives</td>
<td>3.00</td>
</tr>
<tr>
<td>3111</td>
<td>Calculus I</td>
<td>4.00</td>
<td>2142</td>
<td>Comp Prob Solving</td>
<td>3.00</td>
</tr>
<tr>
<td>4102</td>
<td>Prin Fitness/Wellness I</td>
<td>1.00</td>
<td>3213</td>
<td>Probability & Statistics</td>
<td>3.00</td>
</tr>
<tr>
<td>4111</td>
<td>Swimming</td>
<td>0.25</td>
<td>4103</td>
<td>Personal Defense I</td>
<td>0.25</td>
</tr>
<tr>
<td>5102</td>
<td>Chemistry I</td>
<td>4.00</td>
<td>4112</td>
<td>Prin Fitness/Wellness II</td>
<td>1.00</td>
</tr>
<tr>
<td>6101</td>
<td>Fndmntls of Navigation</td>
<td>4.00</td>
<td>5162</td>
<td>Physics I</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8115</td>
<td>Macroeconomic Prin</td>
<td>3.00</td>
</tr>
</tbody>
</table>

* These courses may be scheduled during the Fall or Spring Semester.

Spring Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2111</td>
<td>College Composition</td>
<td>3.00</td>
</tr>
<tr>
<td>2163</td>
<td>American Government</td>
<td>3.00</td>
</tr>
<tr>
<td>3111</td>
<td>Calculus I</td>
<td>4.00</td>
</tr>
<tr>
<td>4102</td>
<td>Prin Fitness/Wellness I</td>
<td>1.00</td>
</tr>
<tr>
<td>4111</td>
<td>Swimming</td>
<td>0.25</td>
</tr>
<tr>
<td>5102</td>
<td>Chemistry I</td>
<td>4.00</td>
</tr>
<tr>
<td>6101</td>
<td>Fndmntls of Navigation</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Third Class Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4204</td>
<td>Lifetime Sports I: RQB</td>
<td>0.25</td>
</tr>
<tr>
<td>4214</td>
<td>Lifetime Sports II: Golf</td>
<td>0.25</td>
</tr>
<tr>
<td>52X6</td>
<td>Lab Science</td>
<td>4.00</td>
</tr>
<tr>
<td>6201</td>
<td>Ships & Maritime Sys</td>
<td>3.00</td>
</tr>
<tr>
<td>6202</td>
<td>Apps in Navigation Lab</td>
<td>1.00</td>
</tr>
<tr>
<td>8201</td>
<td>Intro to Mgmt & Bus</td>
<td>3.00</td>
</tr>
<tr>
<td>8211</td>
<td>Org Behavior/Ldrship</td>
<td>3.00</td>
</tr>
<tr>
<td>8217</td>
<td>Microeconomic Prin</td>
<td>3.00</td>
</tr>
</tbody>
</table>

** These courses may be taken during the Fall or Spring Semester depending on which Lab Science (5206 or 5266) is requested.

Second Class Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>6301</td>
<td>Maritime Watch Officer</td>
<td>4.00</td>
</tr>
<tr>
<td>8331</td>
<td>Management Info Sys</td>
<td>3.30</td>
</tr>
<tr>
<td>8348</td>
<td>Managerial Accounting</td>
<td>3.00</td>
</tr>
<tr>
<td>8351</td>
<td>Research Methods</td>
<td>3.00</td>
</tr>
<tr>
<td>8357</td>
<td>Human Resources Mgmt</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First Class Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>6401</td>
<td>SelTps 100 Ton Master</td>
<td>3.00</td>
</tr>
<tr>
<td>6402</td>
<td>SelTps 100 Ton Master Lab</td>
<td>1.00</td>
</tr>
<tr>
<td>8443</td>
<td>Strategic Management</td>
<td>3.00</td>
</tr>
<tr>
<td>8444</td>
<td>PMC Prep</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: First class cadets must take 0.50 credit hours of health and physical education. As a graduation requirement, each cadet must pass or validate a minimum of six (6) academic credits in HPE.
PART V — COURSES

0901 THE HISTORY OF THE UNITED STATES COAST GUARD
The History of the U.S. Coast Guard is a one-credit course designed to introduce Fourth Class cadets to the rich history and remarkable achievements of the USCG, while familiarizing students with the historical underpinnings of the CG missions and the Academy. The course will target specific 4/c skills, learning competencies, and communication abilities through information literacy assignments, several short research projects, and at least one oral project.
Credit Hours: 1.00
Format: Class/Tutorial/Project/Independent Study/Teams/Lecture/Workshop/Online/Off-Site
Prerequisites: None
Projected Offering: Fall and Spring

0924 CONNECTICUT COLLEGE
Single-course exchange program with Connecticut College. Offers cadets an opportunity to enhance their background by enrolling in a free elective. Enrollment is normally limited to one semester and to a course not available at CGA.
Credit Hours: None
Format: None
Prerequisites: None
Projected Offering: Fall and Spring

0925 SCHOLAR’S PROJECT
Independent study and research in an area of interest to the highly qualified cadet. It requires a major academic commitment of the cadet to problem definition, analysis, and evaluation. An oral presentation and written reports are required.
Credit Hours: None
Format: None
Prerequisites: None
Projected Offering: Spring

0933 JUNIOR HONORS COLLOQUIUM
Introduction to the standards of excellence and requirements for prestigious post-graduate fellowships such as the Rhodes, Marshall, Fulbright, Mitchell, Truman, Gates Cambridge, and Hertz. Grading is Satisfactory/Unsatisfactory.
Credit Hours: 1.00
Format: None
Prerequisites: Recommendation by Academic Advisor and Honors Director
Projected Offering: Fall and Spring

0935 SENIOR HONORS COLLOQUIUM
Information, advising, and support for first-class cadets who are applying for prestigious postgraduate fellowships. Grading is Satisfactory/Unsatisfactory.
Credit Hours: 1.00
Format: None
Prerequisites: Recommendation by Academic Advisor and Honors Director
Projected Offering: Fall and Spring

0940 PEER TUTORING
Satisfactory/Unsatisfactory Option
This one-credit course introduces 3/c though 1/c cadets to the theory and practice of tutoring, learning strategies across disciplines, and ways to guide students to become independent learners. Enrollment in the course requires cadets to complete 8 hours of training, to tutor for 8 hours, and to maintain a tutoring log. A course grade of satisfactory will be awarded to those who complete the requirements. Advisor approval is
required prior to enrolling in the course. The course may be repeated up to six times.
Credit Hours: 1.00
Format: Seminar, workshops, tutorials
Prerequisites: Faculty recommendation for courses to be tutored
Projected Offering: Fall and Spring

0941 PEER TUTORING
Letter-grade Option
This one-credit course introduces 3/c though 1/c cadets to the theory and practice of tutoring, learning strategies across disciplines, and ways to guide students to become independent learners. Enrollment in the course requires cadets to complete 8 hours of training, to maintain a tutoring log, to complete 24 hours of tutoring, and to complete response essays at the end of the semester. A letter grade will be awarded to those who complete the requirements. Advisor approval is required prior to enrolling in the course. The course may be repeated up to six times.
Credit Hours: 1.00
Format: Seminar, workshops, tutorials
Prerequisites: Faculty recommendation for courses to be tutored
Projected Offering: Fall and Spring

1104 INTRODUCTION TO COMPUTING
The world is full of questions - many of which cannot be answered without the aid of computing resources. This course explores the fundamental aspects of computer-based problem solving (ex. modeling and algorithms) and engages students in solving real world problems reflecting a diverse array of fields spanning mathematics, engineering, and the sciences (including Coast Guard applications). Solving these problems will reinforce quantitative reasoning skills and teach students fundamental programming concepts using Excel and Matlab. By the end of this course, students will be able to extend the foundational knowledge acquired in this course to future learning in application and computer programming and solving more complex problems of any academic discipline.
Credit Hours: 3.00
Format: Class
Prerequisites: None
Projected Offering: Fall and Spring

1105 INTRODUCTION TO COMPUTING (HONORS)
The world is full of questions - many of which cannot be answered except with the aid of computing resources. This course covers the same topics as 1104, Introduction to Computing, but at a pace and depth consistent with the ability of the class. Students review the fundamental aspects of computer-based problem solving (ex. modeling and algorithms) and engage in solving real world problems reflecting a diverse array of fields spanning mathematics, engineering, and the sciences (including Coast Guard applications). Solving these problems will reinforce quantitative reasoning skills and teach students fundamental programming concepts using Excel and Matlab. By the end of this course, students will be able to extend the knowledge acquired in this course to future learning in application programming and in solving more complex problems of any academic discipline.
Credit Hours: 3.00
Format: Class
Prerequisites: None
Projected Offering: Fall and Spring

1118 ENGINEERING MECHANICS - STATICS
Develop an understanding of the principles of statics and the ability to construct a free body diagram. Introduce the concepts of forces, resolution and composition of forces and moments as applied to free body diagrams. Solve equilibrium problems (two-dimensional and three-dimensional) involving trusses, frames, beams, and other rigid bodies. Understand the concept of internal forces in members and be able to draw the shear and moment diagrams for beams. Apply the laws of dry friction in equilibrium analyses. Understand properties of areas and be able to calculate centroids and moments of inertia for areas. Develop
Critical thinking skills necessary to formulate strategies for solving engineering problems.
Credit Hours: 3.00
Format: Class
Prerequisites: None
Projected Offering: Fall and Spring

1204 ENGINEERING MATERIAL SCIENCE
Introduction to materials science and engineering for engineers with an emphasis in crystalline structure and defects, dislocation theory, diffusion, mechanical properties, fracture, strengthening mechanisms, phase transformations, fatigue, creep, corrosion, and welding for various materials, such as metal alloys and composite materials. Lab experiments and demonstrations include: cold rolling and annealing, Charpy impact testing, Jominy end-quench, casting, forging, welding, composites, and non-destructive testing.
Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: 5206
Co-requisite: 1206
Projected Offering: Spring

1206 MECHANICS OF MATERIALS
The study of stress, strain and deformations resulting from loads applied to deformable bodies. Major topics include stress-strain relationships, torsion, normal stress, shear stress, combined stresses, beam deflection, column buckling, and design of beams and shafts.
Credit Hours: 3.50
Format: Class/Laboratory
Prerequisites: 3117 and 1118
Projected Offering: Fall and Spring

1208 INTRODUCTION TO MECHANICAL ENGINEERING DESIGN
Techniques of engineering design and problem solving. Introduction to computer use in the design process including analytical tools and computer-aided design and some exposure to introductory programming. Engineering drawing, sketching and visualization. Familiarization with manufacturing techniques. Study and practice of the design process through individual and group projects. Fundamental physical and mathematical concepts used in the design process, as well as the ethical and sociological considerations of technology. Design assignments address idea generation, modeling, and project management techniques including scheduling and economic analysis. Projects apply all of the aspects of problem solving, design, and reporting results.
Credit Hours: 3.00
Format: Class/Laboratory
Prerequisites: None
Projected Offering: Spring

1209 MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS (TRANSFERS)
Special course in Material Science - aggregates, concrete, and asphalt - to accommodate transfers into the Civil Engineering Major for students who have completed 1204.
Credit Hours: 2.00
Format: Class/Laboratory
Prerequisites: 1204
Projected Offering: Spring

1210 MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS
The study of the civil engineering and construction materials such as aggregates, concrete, asphalt concrete, steel, wood and geosynthetics. Emphasis is placed on understanding the engineering properties of these materials and how they affect material selection, construction methods and performance. The relevant aspects of the science and technology of the engineering properties are discussed, but focus is on practical applications, construction practices and quality control. Placement and construction methods/procedures,
especially for Portland cement concrete (PCC), asphalt concrete (AC) and major applications of geosynthetic materials are addressed. Students will be exposed to the use of standard specifications and methods of testing for the determination or evaluation of the engineering properties of these materials. Course includes a pavement design project and two field trips.

Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: 1118
Projected Offering: Spring

1211 DYNAMICS
Kinematics and kinetics of particles and rigid bodies in two dimensions under the effects of unbalanced force systems. Principles of force and acceleration; work and energy; impulse and momentum; damped and undamped single degree of freedom vibration. Engineering applications.

Credit Hours: 3.00
Format: Class
Prerequisites: 1118 and 5162
Projected Offering: Spring

1212 ANALYTICAL METHODS IN ENGINEERING
An intermediate course in the study of analytical methods applied to engineering problems. Topics include first order ordinary differential equations; complex numbers and functions; second and higher order linear differential equations; Fourier series; Laplace transforms; vectors, matrices and determinants; linear systems of equations; and matrix eigenvalue problems.

Credit Hours: 4.00
Format: Class
Prerequisites: 3115 or 3117
Projected Offering: Fall

1218 ELECTRICAL ENGINEERING I
An introductory course in linear circuit analysis that develops the fundamental tools necessary for further success in the EE field. Students are introduced to the following topics: models of circuit elements; circuit analysis using Ohm’s and Kirchoff’s laws; nodal and mesh analysis; basic ideal operational amplifier circuits; Thevenin and Norton equivalent circuits, solution of first and second order circuits; phasor-based solutions to AC circuits; elementary frequency response. MATLAB is introduced and used throughout the course. An emphasis is placed on the formulation and solution of linear systems of equations, including a system of differential equations, through traditional and computer aided methods. This course builds upon the background gained in physics and calculus courses and prepares students for taking Signals, Systems and Transforms (1222), Digital Circuits and Computer Systems (1225), Antennas and Propagation (1323) and Linear Circuits (1322).

Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: 3115 or 3117
Corequisite: 1212
Projected Offering: Fall

1220 TRANSITION TO OBJECT ORIENTED PROGRAMMING
Description: TBD
Credit Hours: 2.00
Format:
Prerequisites:
Projected Offering: Fall

1222 SIGNALS, SYSTEMS AND TRANSFORMS
The study of continuous and discrete linear systems through signal analysis, singularity functions, convolution, Fourier transforms, Laplace transforms and Z-transforms. The formulation and solution of
differential (and difference) equations by using transform techniques. The time and frequency domain analysis of linear systems via calculations, theoretical computer simulations using MATLAB software, and physical laboratory systems is examined.
Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: 1218 or 1321 and 1212 or 3215
Projected Offering: Spring

1224 INTRODUCTION TO COMPUTER PROGRAMMING
This course will introduce students to programming on two levels – the abstract and the concrete. At the abstract level we will discuss the programming principles of algorithm and flow of control, including sequential execution, selection, iteration, and subroutine. At the concrete level students will put principles into practice by writing programs in two modern programming languages: MATLAB® and C++. Laboratory work and programming projects will give students experience in both languages.
Credit Hours: 3.00
Format: Class
Prerequisites: None
Projected Offering: Fall

1225 DIGITAL CIRCUITS AND COMPUTER SYSTEMS
Principles of digital systems design. Topics include number systems, Boolean algebra, Karnaugh maps, decoders, multiplexers, flip-flops, registers, counters, programmable logic devices, analysis and design of combinational and sequential circuits. Computers are used extensively in lab to control and monitor digital circuits designed and constructed by students. Labs focus on computer I/O, MultiSIM modeling, MATLAB programming, and graphical user interfaces. Top-down design is introduced, culminating in an intensive design project including a computer interface.
Credit Hours: 4.00
Format: Class/Laboratory/Project
Prerequisites: 1218 or EE Section Chief approval
Projected Offering: Spring

1304 SOIL MECHANICS
This course involves the study of the engineering characteristics of soils. The fundamentals of soil behavior, its use as a construction material, effect of water movement through soil including flow nets, effective stress principle, one-dimensional settlement analysis, shear strength, lateral earth pressure, soil bearing capacity for shallow foundations and stability of slopes are covered.
Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: 1118
Projected Offering: Spring

1309 ENVIRONMENTAL ENGINEERING I
Introduction to the field of environmental engineering. Students learn the fundamental scientific principles used by environmental engineers to understand, analyze, and design systems and apply these principles to the study of water quality engineering, solid waste, hazardous waste, and air pollution. Legal, political, and ethical aspects of the field are examined throughout the course. The laboratory component of the course is designed to provide students with experimental design, data analysis, and technical report writing. The laboratory also allows students to learn about water quality parameters, analytical techniques, and educates them on proper interpretation and use of environmental quality data.
Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: 5206
Projected Offering: Fall
1310 ENVIRONMENTAL ENGINEERING LAB
This course is required and only available to students who took AFA CE 362 while on exchange. The overload course consists of the laboratory portion of 1309 Environmental Engineering I.
Credit Hours: 1.00
Format: Laboratory
Prerequisites: 5206, AFA CE 362
Projected Offering: Fall

1311 SPECIAL TOPICS IN GEOTECHNICAL ENGINEERING
This course is required and only available to students who took AFA CE 390 while on exchange. This overload course will primarily consist of topics in lateral earth pressure, retaining wall, some aspects of shallow foundations, theory of soil consolidation, training in the Geoslope/Geostudio analysis software package, and the technical paper and presentation to be completed within the framework of 1304 Soil Mechanics in the spring semester.
Credit Hours: 1.00
Format: Class
Prerequisites: 1118, AFA CE 390
Projected Offering: Spring

1312 TRANSPORTATION ENGINEERING
Transportation is essential for all economic, recreational, and social activities. The field of transportation engineering encompasses several modes including, rail, water, highways and air. Transportation engineers are responsible for the planning, design, operation, and maintenance of such infrastructure. This is an introductory course on the fundamentals and concepts of transportation engineering with a focus on the highway mode of transportation. Special emphasis is placed on the planning, design, operation, safety and maintenance of highway infrastructure. Students will be exposed to the tools and concepts required to analyze and design transportation systems.
Credit Hours: 3.00
Format: Class
Prerequisites: 1118, 3111, 5162
Projected Offering: Spring

1313 STEEL DESIGN
Determination of building loads including dead, live, snow, and wind in accordance with ASCE Standard 7. Structural behavior and design of steel members including beams, columns, beam-columns, and tension members. Design of bolted and welded connections. All design is based on the provisions of the AISC Specification for Structural Steel Buildings.
Credit Hours: 3.00
Format: Class
Prerequisites: 1317
Projected Offering: Spring

1317 STRUCTURAL ANALYSIS
Analysis of statically determinate plane structures including internal forces and moments of members. Deflection analysis using the conjugate beam and virtual work methods. Analysis of moving loads using influence lines. Statically indeterminate structural analysis using consistent deformations and slope deflection. Computer applications included.
Credit Hours: 3.00
Format: Class
Prerequisites: 1206
Projected Offering: Fall

1321 ELECTRIC CIRCUITS AND MACHINES
An introduction to electric circuit analysis using Ohm’s and Kirchoff’s laws, Thevenin and Norton equivalents, nodal analysis of DC and AC circuits, solution of first order circuits, and the use of phasors in
the solution of AC and three phase circuits. The principles and applications of electromechanical energy conversion and power systems, including transformers, DC and AC machines, induction motors, and synchronous generators.
Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: 3115 or 3117
Projected Offering: Fall

1322 LINEAR CIRCUITS
The design of filters in both continuous and discrete time is examined. Particular emphasis is placed on the relationship between the poles and zeros of transfer functions and the resulting frequency responses of networks. Extensive computer use for the design and analysis of filters. State of the art laboratory instruments are used to measure the frequency responses of the filters designed and constructed. Final project emphasizes the design and use of digital filters.
Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: 1222
Projected Offering: Fall

1323 ANTENNAS AND PROPAGATION
Fundamentals of electromagnetic theory are presented. Maxwell’s equations are developed from physical phenomenon. Plane electromagnetic wave propagation in various media. Propagation of waves on transmission lines, including computer simulations on ideal and practical lines. Antenna fundamentals are described. Performance of simple antennas and arrays. Design of simple antenna arrays and broad band antennas is presented. Computer aided design of antenna arrays, structures, and shipboard antennas is presented. A final design project gives each student the opportunity to analyze a problem or specification requirement and craft a solution using computer modeling.
Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: 1218, 3211, and 5266
Projected Offering: Fall

1325 COMPUTER COMMUNICATIONS AND NETWORKING
This course is an introduction to computer communications and networks and examines the application, transport, network, link, and physical layers of the OSI reference model. Web (including HTTP), E-mail (including SMTP), the Domain Name System (DNS), Transport Layer (UDP and TCP), IPv4/IPv6, Routing, and Media Access Control protocols are all discussed and experienced in lab. The course concludes with a brief overview of wireless and mobile networks. Laboratory work also introduces the students to network administration including the analysis of network communications at the hardware and logical levels.
Credit Hours: 3.50
Format: Class/Laboratory
Prerequisites: None
Projected Offering: Spring

1328 SOFTWARE ENGINEERING
This course builds upon the programming skills learned in Introduction to Computer Programming to a comprehensive understanding of object-oriented programming and design using the C# language in the contexts of the Software Engineering discipline. Class time focuses on such software engineering topics as modeling, planning, requirements, architecture, design, implementation, testing, maintenance, evaluation, and improvement. The lab focuses on using industry best practices to design and implement object-oriented software applications, often with web presentation or database data tiers. The course concludes with a significant team software engineering assignment that provides an opportunity to put what has been learned into practice.
Credit Hours: 4.00
1329 DIGITAL SIGNAL PROCESSING
The development of basic DSP concepts to support an exposure to DSP applications is examined. Sampling theory, quantization, digital filters, Z-domain analysis, and Discrete Fourier Transforms serve as a foundation for applications such as: speech compression, recognition, modeling and synthesis; digital audio processing; adaptive noise cancelation; and, digital image processing. An integrated approach of theory and hands-on learning is used. Student projects based on MatlabTM (or DSP hardware) plus weekly homework are used to reinforce classroom theory and application.
Credit Hours: 3.00
Format: Class/Laboratory
Prerequisites: 1224 or 3235
Projected Offering: Spring

1330 COMPUTER AND NETWORK SECURITY
Extending the basic knowledge gained in Introduction to Computer Programming and Computer Communications and Networking, this course introduces students to the fundamentals of computer and network security. Threats, vulnerabilities, exploits, and mitigations are examined within the context of a computer as well as the network. The role of cryptography and its mathematical foundations are explored. Students study the principles of confidentiality, integrity, and availability and work hands on with modern security techniques including hashes, firewalls, intrusion prevention systems, public key infrastructure, and transport layer security. Students are also provided the opportunity to place their education into practice as participants in the NSA’s annual Cyber Defense Exercise.
Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: 1325 and (1224 or 3235)
Projected Offering: Spring

1331 AUTOMATIC CONTROL SYSTEMS
This course presents the fundamental concepts of modeling, analysis, and controller design in the frequency and time domains. For modeling linear systems, this course introduces the principles of transfer function, state space, and reduction of multiple subsystems. Analysis of stability and steady state error is presented. Proportional, integral, and derivative controllers are designed using root locus and frequency response techniques. The laboratory exercises are based on applying course concepts to real world applications. An introduction to digital control systems is presented as time permits.
Credit Hours: 3.50
Format: Class/Laboratory
Prerequisites: 1218 and 1222
Projected Offering: Spring

1332 PRINCIPLES OF ELECTRONIC COMMUNICATION SYSTEMS
Description: TBD
Credit Hours: 1.50
Format:
Prerequisites:
Projected Offering: Fall and Spring

1340 FLUID MECHANICS
The study of forces produced by fluids and their effects on bodies. Fundamental fluid mechanics principles: fluid properties, fluid statics stability of floating and submerged bodies, fluid flow equations relating to the conservation of mass, momentum and energy, dimensional analysis, viscous effects related to pipe and open channel flow, lift, drag, resistance, and fluid power applications. The exploration of design for fluids systems.
1342 PRINCIPLES OF NAVAL ARCHITECTURE
The course covers the fundamental principles of Naval Architecture including ship nomenclature, geometry, hydrostatics, stability, subdivision, hydrodynamics, ship structures, resistance, propulsion, and ship motions. Introduction to, and use of, computational methods will follow computation by traditional numerical techniques. In the laboratory portion of the course, the student will develop the skills required for the preliminary design of a vessel.
Credit Hours: 3.00
Format: Class/Laboratory
Prerequisites: 1118 and 3211
Projected Offering: Fall

1343 APPLIED NAVAL ARCHITECTURE
Description: TBD
Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: 1342
Projected Offering: Fall

1351 THERMODYNAMICS
Credit Hours: 3.00
Format: Class
Prerequisites: 3211, 5206, and 5162
Projected Offering: Fall

1353 THERMAL SYSTEMS DESIGN
Credit Hours: 3.00
Format: Class
Prerequisites: 1351
Projected Offering: Fall

1355 MARINE ENGINEERING
This is a first course in Marine Engineering. It addresses the design and operation of machinery onboard ships and boats. Thermodynamics and electricity are reviewed and applied to shipboard propulsion and electric power. Energy conversion, power plant concepts, and shipboard main machinery are studied. Diesel engines, gas turbines, and shipboard auxiliary systems are studied.
Credit Hours: 3.50
Format: Class/Laboratory
Prerequisites: 1340 and 1351
Projected Offering: Spring

1356 SHIP STRUCTURES
This course introduces the design and analysis of ship structures. The course includes still water and wave
induced vessel loading. The analysis of primary, secondary, and tertiary hull stresses and the application of ABS rules to ship structural design are addressed. Longitudinal bending and shear are discussed as well as elastic and plastic plate bending and buckling. Fatigue is introduced, as well as hull materials and vessel construction methods. The course includes homework, exams, and a model scale structural design and construction project. The model scale project provides an opportunity to apply and integrate the basic principles of buoyancy, stability, and ship structures. Computer analysis of ship structures is introduced and applied to the model scale project.

Credit Hours: 3.50
Format: Class/Laboratory
Prerequisites: 1204, 1206 and 1342 or Permission of Instructor
Projected Offering: Spring

1370 MECHANISMS
Fundamentals of mechanisms and machinery design through introduction of the synthesis and analysis of mechanisms and machines. Rigid-body kinematics, kinetics, and dynamics as applied to linkage analysis and design. Position, velocity, acceleration, and force analyses. Weekly labs are devoted to hands-on designs, use of synthesis/analysis software, and design-build-test workshops.

Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: 1208 and 1211
Projected Offering: Fall

1395 PROJECTS IN ENGINEERING
Projects in Engineering under the direct supervision of a faculty member. The projects can be direct participation in laboratory projects, research, or individual projects requiring periodic instructor review. Specific projects can involve construction of hardware, computer software, experimental work, or a paper study. Final written report required. May be taken only as an overload.

Credit Hours: 1.00
Format: Project
Prerequisites: Approval of Advisor and Major Coordinator
Projected Offering: Fall and Spring

1401 CONSTRUCTION PROJECT MANAGEMENT
This course provides an introduction to the management practices of the construction industry, specifically focusing on how projects are planned and executed. Topics include design and contracting methods, reading and understanding construction drawings and specifications, scheduling, cost estimation, life-cycle cost analysis, construction productivity, and engineering ethics. Contemporary issues of the industry, including sustainable design, will be analyzed. This course also serves to introduce students to the Senior Research and Design (Capstone) Project. Students will initiate the design process by defining the project’s problem statement, and conducting research to support their solution. Students from outside the CE major will be expected to produce equivalent work.

Credit Hours: 3.00
Format: Class/Project
Prerequisites: Senior Status
Projected Offering: Fall

1402 CIVIL ENGINEERING DESIGN
The Senior Research and Design (Capstone) course for the Civil Engineering major requires students to plan, design, and manage a complex open-ended civil engineering project. Students apply a variety of knowledge from a broad range of technical, managerial, and humanities coursework to produce solutions that consider the economic, socio-political, ethical, and environmental aspects of real-world problems. Students will produce engineering calculations, construction drawings, project schedules, cost estimates and any other necessary project specific documents. In addition, students communicate the results of their project via a final report and presentation to their client.

Credit Hours: 4.00
1404 GEOTECHNICAL ENGINEERING DESIGN
This course provides students with the tools required for the design of geotechnical support systems. The focus is on the design of these systems through the completion of several project assignments. Course components include subsurface exploration, design of shallow foundations, design of pile foundations, design of drilled shafts foundations, lateral earth pressure and design of rigid and flexible retaining structures, construction dewatering, soil improvement, and ground modification.
Credit Hours: 3.00
Format: Class
Prerequisites: 1401
Projected Offering: Spring

1407 ENVIRONMENTAL ENGINEERING II
This course applies fundamental concepts from environmental engineering, hydrology, and fluid mechanics to the analysis and design of systems for water distribution, storm water/wastewater collection, and water and wastewater treatment. Water and wastewater treatment are not covered separately in this class. Rather, systems are grouped based on the type of process (biological, chemical, or physical). This approach recognizes that many systems are used in both water and wastewater treatment and that the underlying concepts are the same regardless of the application.
Credit Hours: 3.00
Format: Class
Prerequisites: 1304
Projected Offering: Fall

1409 WATER RESOURCES ENGINEERING
This course offers a basic introduction to the field of Water Resources Engineering. Topics include surface and groundwater hydrology, rainfall-runoff analysis, reservoir and river routing, probability and frequency analysis, water excess management/control, and watershed management.
Credit Hours: 3.00
Format: Class
Prerequisites: 1407 or permission of the Instructor
Projected Offering: Spring

1411 REINFORCED CONCRETE DESIGN
This course provides students with the fundamental theory and application of reinforced concrete design in buildings. Detailed coverage of behavior and design of singly and doubly reinforced concrete beams, T-beams, slabs, beam-columns, and spread footings. Additional topics: placing of reinforcement, bar cutoffs, bonds, and deflections. Design and detailing based on current ACI 318 building code. Course includes Excel programming, analysis and design of various components of a multi-story building, and the design, construction and testing of a full-scale reinforced concrete beam.
Credit Hours: 3.00
Format: Class
Prerequisites: 1206 and 1210
Projected Offering: Fall

1414 STRUCTURAL DESIGN FOR EXTREME EVENTS
Consistent with homeland security concerns, course examines the analysis and design of structures for extreme events, including blast and earthquake loads. Background in fundamental concepts of structural dynamics theory necessary to predict structural response and performance under extreme events, including: dynamics of single and multiple degree-of-freedom systems for various load functions; approximation methods for dynamic analysis; dynamic material behavior; elasto-plastic structural response. Study of blast and earthquake load characteristics. Design philosophies for building security and strategies to enhance
earthquake and blast-resistant performance. As a side topic, control of building floor vibrations under conventional loads is also addressed.
Credit Hours: 3.00
Format: Class
Prerequisites: 1313, 1411, and 3215, or permission of Instructor
Projected Offering: Spring

1419 DIRECTED STUDIES IN CIVIL ENGINEERING
Individual Projects in Civil Engineering involving reading, design, analysis, or applications. Oral briefing and final research report are required.
Credit Hours: 3.00
Format: Directed Studies
Prerequisites: Permission of Project Advisor and Civil Engineering Section Chief
Projected Offering: Fall and Spring

1420 ELECTROMECHANICAL SYSTEMS
Principles and applications of electromechanical energy systems. Topics include 3-phase power, induction motors, synchronous machines, DC machines, electrical power distribution, and transformers. Laboratory experiments include transformers, building AC motors and testing rotating machinery.
Credit Hours: 3.30
Format: Class/Laboratory
Prerequisites: 1218
Projected Offering: Spring

1422 COMMUNICATION SYSTEMS
An analysis and design of communication systems with an emphasis on digital systems. Baseband and passband transmission systems are investigated. Coherent and noncoherent modulation/demodulation schemes are presented. Error correction coding, line codes, correlation, and intersymbol interference are also reviewed. Modulation techniques include analog AM and FM as well as digital BPSK, FSK and MSK. Related laboratory exercises make extensive use of Digital Signal Analyzers, Digital Storage Oscilloscopes and computers to study properties of communication signals and system.
Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: 1222, 1322 and 3341
Projected Offering: Fall

1426 CAPSTONE PROJECTS IN ELECTRICAL ENGINEERING I
This is the first of two capstone courses in Electrical Engineering during the senior year. The focus of this course will be taking students through the first half of the Engineering Design Cycle. Classroom discussions will focus on the engineering design process including needs identification, system requirements, system design process and engineering ethics. Additional lectures will center on contemporary electrical engineering topics. In the lab, cadets begin a two-semester major engineering design project. Working as an apprentice engineer alongside faculty members and contractors as part of a small Coast Guard project team, students are confronted with real-world engineering problems that require formal resolution with no predetermined outcome. A typical project includes requirements definition, computer programming, computer algorithm design and system implementation, data gathering and analysis, and presentation of results in a paper and oral presentation. Field trips to Coast Guard labs and project related trips to various locations are included.
Credit Hours: 4.00
Format: Class/Laboratory/Project
Prerequisites: 1/c EE major or EE Section Chief approval
Projected Offering: Fall

1431 ELECTRONIC NAVIGATION SYSTEMS
This course is an engineering study of primary electronic navigation systems used throughout the world for
positioning, navigation, and timing (PNT). The mathematics of positioning for “ranging type” systems is presented. Electronic navigation signals and systems are compared in both time and frequency domains, and are examined in the contexts of accuracy, availability, integrity, and vulnerability. Specific systems and augmentations considered are NAVSTAR GPS, Wide Area Augmentation System (WAAS), Differential GPS (DGPS), eLoran, ILS, VOR, and DME. Other possible topics include: GLONASS, Galileo, BeiDou, Inertial Navigation, Indoor Navigation, and Kalman Filtering.

Credit Hours: 3.00
Format: Class
Prerequisites: 1218 or 1321 or permission of the Instructor
Projected Offering: Spring

1435 INTRODUCTION TO AERODYNAMICS
This course provides the necessary tools to understand the dynamics of flow fields and their impact on solid (aerodynamic) bodies. The course uses the fundamental laws of conservation (mass, momentum and energy) to develop the necessary equations of motion for inviscid, incompressible flows. Lifting theory for flow over 2-D airfoils (symmetric and cambered) and finite wings is presented. References and comparisons are made to surface ship hydrodynamics. Software tools are introduced and implemented in solving more complex problems. Preliminary aspects of compressible flow are introduced.

Credit Hours: 3.00
Format: Class
Prerequisites: 1340 and 1351
Projected Offering: Spring

1436 CAPSTONE PROJECTS IN ELECTRICAL ENGINEERING II
This is the second senior-year capstone course in Electrical Engineering and completes the cadet’s electrical engineering program of instruction. The focus of this course will be taking students through the second half of the Engineering Design Cycle, and Project Management. Classroom discussions will cover system testing, system reliability, team management, budgeting and scheduling. Additional lectures will cover engineering ethics, engineering economics and contemporary electrical engineering topics. During the Laboratory periods, cadets bring their two-semester major engineering project to a close, and present the results to Academy faculty and to professionals from Coast Guard Headquarters and various Coast Guard engineering commands. Field trips to Coast Guard labs and project-related trips to various locations are included.

Credit Hours: 4.00
Format: Class/Laboratory/Project
Prerequisites: 1426
Projected Offering: Spring

1437 ENGINEERING EXPERIMENTATION
Experimental data analysis using uncertainty theory, curve-fitting, and statistical criteria. Data acquisition with electronic instrumentation and commercial software, analog to digital conversion, operation amplifiers, and signal conditioning. Instrumentation for flow, temperature, pressure, force, torque, strain and vibration is presented. Test planning, data point spacing, and professional society standard test procedures. The role of computer data acquisition systems to collect, analyze and display data is stressed.. Weekly labs expand on the concepts of experimental design learned in class, and focus on the analysis of mechanical, fluid and thermal systems. The course includes an experimental design project where cadets reproduce results described in professional literature.

Credit Hours: 3.00
Format: Class/Laboratory
Prerequisites: 1211, 1321, 1340, 1351, and 3301
Projected Offering: Fall

1439 DIRECTED STUDIES IN ELECTRICAL ENGINEERING
Individual or group study of topics involving design, analysis, or applications of electric and electronics devices, systems, or principles.
1440 MACHINE DESIGN
Design of machine elements, including considerations such as material strength, manufacturing processes, safety, reliability, stress concentration, fatigue, corrosion, and tribology. Mechanical power transmission devices, including shafts, gears, belts, springs, fasteners, bearings and couplings. Introduction to mechanical component integration and design-build-test projects.
Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: 1206, 1370
Projected Offering: Spring

1442 PRINCIPLES OF SHIP DESIGN
This course involves extensive use of the design process; application of estimation and iteration procedures with emphasis on preliminary hull dimensions and weight estimates; preliminary subdivision and development of general arrangements; intact stability analysis; and a longitudinal strength analysis. Computer Aided Design software is used to develop hull geometry and interior arrangements. State of the art analysis tools are implemented to analyze hydrostatic characteristics and make an intact stability assessment in various loading conditions. This course runs concurrently with the Ship Propulsion Design course (1453) and addresses the hull design, arrangements, and missions of the senior project. The project is completed in the Ship Design/System Integration course (1444).
Credit Hours: 4.00
Format: Class/Project
Prerequisites: 1342, 1355 and 1356
Projected Offering: Fall

1444 SHIP DESIGN/SYSTEM INTEGRATION
The Capstone design course for the Naval Architecture and Marine Engineering Major includes: Geometrically scaled model hull construction and resistance testing; electrical plant and selected auxiliary system design and analysis; project planning; marine propulsion plant selection and integration; heating, ventilation and air conditioning system design and analysis; engineering economics; trade-off studies in design, construction and life cycle costing applied to preliminary ship design developed in Principles of Ship Design (1442). The emphasis is on integration of hull and machinery systems into complete vessel package.
Credit Hours: 3.00
Format: Class/Project
Prerequisites: 1356, 1442 and 1453
Projected Offering: Spring

1446 MECHANICAL ENGINEERING DESIGN
Integrated design of mechanical systems including consideration of system performance, safety, reliability, cost, project management, and socio-ecological impacts. Engineering economy in design. Engineering ethics case studies and engineering standards. Advanced topics in modeling and testing of system components, numerical simulation of system characteristics, and system design optimization. The utilization of CAD design system. Capstone design projects require the application of the design process, including idea generation, concept design, prototype design and detailed design.
Credit Hours: 4.00
Format: Class/Project
Prerequisites: 1440 and 1480
Projected Offering: Spring
1447 **MARINE CASUALTY RESPONSE**

Provides a basic application of engineering principles used during marine casualty response operations, i.e., ship collisions, allisions, groundings, and marine firefighting. The course expands on the basic fundamentals of naval architecture, marine structures, and statics to solve real-world engineering problems created by marine casualties. Hands-on learning and case studies of real-world marine casualties are used as the backdrop for applying engineering fundamentals. Basic concepts include: vessel nomenclature, hydrostatics, intact and damaged stability, trim, hull girder strength, evaluation of secondary and local structural strength, basic damage control, and environmental factors, as well as USCG roles and responsibilities.

Credit Hours: 3.00
Format: Class
Prerequisites: 1118, 1206, and 6201
Projected Offering: Fall

1451 **INTRODUCTION TO SEAKEEPING**

Seakeeping is the study of the motions of a ship or floating structure, when subjected to waves, and the resulting effects on humans, systems, and mission capability. This course introduces special analysis and uses it to model sea wave excitation. Ship motions are studied with six degree of freedom rigid body motions and Response Amplitude Operators (RAO’s) are introduced. Seakeeping performance is measured with performance criteria and discussed. Considerations for preliminary design are introduced as well as methods of controlling of ship motions.

Credit Hours: 3.00
Format: Class/Project
Prerequisites: 1211, 1340, 3301
Projected Offering: As Required

1453 **SHIP PROPULSION DESIGN**

An advanced marine engineering design course requiring the application of sound judgment and analysis to engineering decisions. Working concurrently in the Principles of Ship Design course (1442), students optimize and design a propulsion system for their senior design that meets specific operating specifications. Significant emphasis is placed on technical/scientific/professional writing through design reports, as well as multiple individual homework assignments. Topics covered include hull resistance, hull vibration, propulsor selection, engine selection, engine and propulsor matching, electric drive and integrated power systems, electrical load analysis, reduction gear selection and design, engine room layout, shafting design and shaft vibration analysis. The project is completed in the Ship Design/System Integration course (1444).

Credit Hours: 3.00
Format: Class/Project
Prerequisites: 1353 or 1355
Projected Offering: Fall

1457 **SMALL CRAFT DESIGN**

Small Craft Design offers the opportunity to create a comprehensive first design of a small sailboat or powerboat. Tailored to the amateur sailing or boating enthusiast with an engineering background, this course will build upon the prerequisite stability, structural, resistance, and computational analysis techniques as applied to the Design Spiral. Boat design and construction will be discussed in theory and in practice to provide the student with an expanded understanding of the boat and sea interface. The course balances engineering and creativity through the design of a small craft from scratch. Computer Aided Design (CAD) will be relied on heavily, with reference to classical boat design methodology and current classification society rules and guidance. A final design will be created through an understanding of the necessary relationships between hull geometry, hydrostatics, stability, resistance/power, keel/rudder/sail design, structure, hull and rig construction, and materials.

Credit Hours: 3.00
Format: Class/Project
Prerequisites: 1340 and 1342
Projected Offering: Spring
1459 HEAT TRANSFER
Application of Fourier’s law of conduction to one and two dimensional steady and non-steady state heat flow problems. Radiation heat transfer with black and gray surfaces. Newton’s Law of Cooling applied to problems of forced convection. Analysis of heat transfer systems and engineering design using mass and energy continuity concepts. Design applications. Design project based on course fundamentals.
Credit Hours: 3.00
Format: Class
Prerequisites: 1340, 1351, and 3215
Projected Offering: Spring

1460 MODELING AND CONTROL OF DYNAMIC SYSTEMS
The introduction to modeling mechanical systems and obtaining time-domain and Laplace-transform solutions. An emphasis is placed on understanding the fundamentals of simple, damped, and forced oscillations, transient response, and mechanical resonance. The commonality of modeling and analysis techniques is stressed, as well as the use of input-output differential equations. Fundamentals of automatic control systems, including block diagram, root locus, Bode diagrams, as well as proportional, proportional and derivative, and proportional-integral-derivative feedback control systems. Incorporation of computer solutions to analyze and control linear dynamic systems.
Credit Hours: 3.00
Format: Class
Prerequisites: 1211, 1321, and 3215
Projected Offering: Fall

1461 MECHATRONICS
A first course in mechatronics. The course introduces fundamental concepts of mechanisms, actuators, sensors, and control. Practical applications are emphasized, including the use of commercially available microcontrollers. Subjects covered include digital and analog sensor calibration, pulse width modulation, actuator control, basic circuitry, microprocessor programming, and classical control theory. Modeling of dynamics systems using lumped parameter approximations, transfer functions, and the s-domain. Static and dynamic performance is evaluated using empirical P, PD, PI, or PID algorithms. A fully automated mechanism, merging hardware and software components is completed as a final design project.
Credit Hours: 3.00
Format: Class
Prerequisites: None
Projected Offering: Spring

1466 HEATING, VENTILATION, AND AIR CONDITIONING PRINCIPLES
Fundamentals of heating, ventilating and air conditioning systems for buildings. Qualitative and quantitative study topics include psychrometric properties, space air conditioning for design and off-design conditions, air contaminant control, human comfort, heat transfer U-values, heat and mass transfer in buildings, transmission and infiltration losses, solar radiation fundamentals and irradiation modeling, fenestration heat gains, cooling loads, heat extraction rate, fuel estimation, air distribution, fan selection and duct design basics. The Department of Energy simulation software may be used.
Credit Hours: 3.00
Format: Class
Prerequisites: 1351
Projected Offering: Spring

1468 PROJECTS IN NAVAL ARCHITECTURE AND MARINE ENGINEERING
Projects under the direct supervision of a NA&ME faculty member. The projects can be direct participation in NA&ME laboratory projects, research, or individual projects requiring periodic instructor review. Specific projects can involve construction of hardware, computer software, experimental work, or a paper study. Final written report required. May be taken only as an overload.
Credit Hours: 1.00
Format: Project
Prerequisites: Approval of Advisor and NA&ME Section Chief
Projected Offering: Fall and Spring

1469 DIRECTED STUDIES IN NAVAL ARCHITECTURE AND MARINE ENGINEERING
Individual Projects in Naval Architecture and Marine Engineering involving reading, design, analysis, or applications. Oral briefing and final research report are required.
Credit Hours: 3.00
Format: Directed Studies
Prerequisites: Approval of Advisor and NA&ME Section Chief
Projected Offering: Fall and Spring

1479 DIRECTED STUDIES IN MECHANICAL ENGINEERING
Individual or group projects in Mechanical Engineering involving design analysis, or applications. Preparation of a project report or presentation is required.
Credit Hours: 3.00
Format: Directed Studies
Prerequisites: Approval of Advisor and ME Section Chief
Projected Offering: Fall and Spring

1480 DESIGN PROJECT MANAGEMENT
Principles and techniques for creative idea generation and problem solving. Design processes applicable to engineering projects. Techniques for project scheduling and management. Technical communication skills for oral presentations, proposals, written reports and video production. CAD applications. Preliminary planning for capstone projects.
Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: 1208 and 1/c Engineering Major
Corequisite: 1440
Projected Offering: Fall

1489 SELECTED TOPICS IN ELECTRICAL ENGINEERING
This course will explore topics in electrical engineering and computing that expand upon the basic curriculum at the Academy. Instructors will select topics from subjects such as developing software for distributed computing on a network, processor architecture and assembly language programming, operating systems, or numerical methods in computation. Course material will include instruction and practical projects related to the selected topic. Cadets may repeat this course for credit with a different topic.
Credit Hours: 1.00
Format: Class/Laboratory
Prerequisites: Varies according to the specific topic
Projected Offering: Fall and Spring

1491 FUNDAMENTALS OF ENGINEERING EXAM REVIEW
This course, offered as a review, guides 1/c cadets in the engineering majors through a series of topics with the goal of assisting them in their preparation for the Fundamentals of Engineering (FE) exam. Because this exam is the first step toward professional licensure for these engineering graduates, all 1/c engineers are encouraged to take the FE exam. Course review topics follow guidelines established by the National Council of Examiners for Engineering and Surveying. Example review topics include: Statics, Mechanics of Materials, Dynamics, Fluid Mechanics, Mathematics, Thermodynamics, Chemistry, Electric Circuits, Material Science, Engineering Economics and Probability and Statistics.
Credit Hours: 1.00
Format: Class
Prerequisites: 1/c Engineering Major
Projected Offering: Fall and Spring

1493 ENGINEERING ETHICS
Description: TBD
INTRODUCTION TO COLLEGE COMMUNICATIONS
Introduction to persuasive and informative writing to selected audiences for given purposes. Shorter and longer essays develop students’ ability to write thesis statements, select evidence, and document sources within a process that supports revision. Writing practice and analysis of readings develop skills to improve coherence, diction, syntax, and conventions (grammar, punctuation, and spelling). Course also emphasizes public speaking and requires formal and informal speeches.

Credit Hours: 3.00
Format: Class
Prerequisites: Placement by English faculty
Projected Offering: Fall

COLLEGE COMPOSITION
Provides an introduction to principles of academic writing, emphasizing development of analytical reading skills and application of rhetorical strategies. The course covers style, principles of research, documentation, revision, synthesis, and cultural and critical literacies.

Credit Hours: 3.00
Format: Class
Prerequisites: Placement by English faculty
Projected Offering: Fall and Spring

THE ART OF EFFECTIVE WRITING
Academic writing, focusing on rhetoric (art of persuasion), composition, and public speaking at an advanced level. Reading and discussion of arguments.

Credit Hours: 3.00
Format: Class
Prerequisites: Placement by English faculty
Projected Offering: Fall

HUMANITIES CULTURAL PERSPECTIVES: AMERICAN SOCIAL MOVEMENTS
This course is one of an array of offerings that fulfill the Humanities Cultural Perspective requirement, which challenges cadets to explore concepts of identity, the role of power structures, and the impact of social contexts on the individual through the eyes of an “othered” group. This particular course studies the history of the United States through the “Other,” as outsiders and marginalized groups sought to gain access to the promise of America. Using a demographic-thematic historical narrative, this course focuses at the grass-roots level of activism and leadership, and exposes students to dispossessed groups in American history, the causes of their marginalization, and the decisions and actions that constituted efforts to gain admittance to American Freedom. The course will employ significant primary documents, reading, speaking, and writing to plumb the meaning and evolution of American social-cultural history.

Credit Hours: 3.00
Format: Lecture/Discussion
Prerequisites: None
Projected Offering: Fall and Spring

HUMANITIES CULTURAL PERSPECTIVES: ETHNIC LITERATURE IN AMERICA
This course is one of an array of offerings that fulfill the Humanities Cultural Perspective requirement, which challenges cadets to explore concepts of identity, the role of power structures, and the impact of social contexts on the individual through the eyes of an “othered” group. This particular course examines race and ethnicity in American literature, and the ways in which traditionally marginalized authors have addressed identity. Students will engage in a variety of formal and informal writing and speaking exercises.
2133 HUMANITIES CULTURAL PERSPECTIVES: INTRODUCTION TO LATIN AMERICAN CULTURAL STUDIES
This course is one of an array of offerings that fulfill the Humanities Cultural Perspective requirement, which challenges cadets to explore concepts of identity, the role of power structures, and the impact of social contexts on the individual through the eyes of an “othered” group. This particular course introduces students to the cultures and societies of Latin America, through the exploration of their literature, film, and visual arts. By studying a wide selection of short stories, film productions, and art works, it surveys the region from colonial times to the present, focusing on key issues and relevant aspects of the Latin American world. Through a cross-disciplinary perspective, the course aims to educate cadets about the rich and diverse tapestry of Latin American countries and cultures, and familiarize students with notions and perceptions of global affairs that may differ from their own.

Credit Hours: 3.00
Format: Lecture/Discussion
Prerequisites: None
Projected Offering: Fall and Spring

2142 COMPUTER PROBLEM SOLVING
This course is designed to help you use computers to find, organize, analyze, and communicate quantitative data to solve problems and answer questions of interest to a variety of disciplines. In doing so, it will introduce you to the ways in which computer technology has revolutionized how academic research is conducted. This version of “Computer-Based Problem Solving” is intended for Government and Management Majors. Accordingly, emphasis will be placed on data used in the Social Sciences and in developing baseline proficiency with internet-based resources, open access programs, and common Microsoft software packages that you will have ready access to for the balance of your cadet and Coast Guard career. It will also survey an array or software platforms used by a variety of academic disciplines and professions. At its core, though, this course is designed to help you think critically about what questions to ask when using data, how to use computers to organize and analyze it, and how to leverage technological tools to effectively communicate it, regardless of the specific context, programs, or platforms involved.

Credit Hours: 3.00
Format: Class
Prerequisites: None
Projected Offering: Spring

2163 AMERICAN GOVERNMENT
Through open discussion of political issues and controversies, this course examines the framework of our democracy. We will explore the history, founding, development and structure of our system of government, and come to understand why we continue to “approach democracy.” In doing so, students will be given the opportunity to examine the strengths and weaknesses of American national government. We will also explore such topics as political parties, voting, elections, interest groups, the media, civil liberties, civil rights, domestic policy and foreign policy. The course is divided into five parts. Part I presents the foundations of American government. Part II explores the institutions of American democracy. Part III focuses on the processes of American Government and democracy. Part IV provides a detailed analysis of various issues of civil rights and liberties. Finally, Part V addresses the policymaking processes and its consequences.

Credit Hours: 3.00
Format: Class
Prerequisites: None
Projected Offering: Fall and Spring
2235 SPANISH I
Introduction to the basics of the Spanish language. Requires composition and oral classroom drill sessions. Includes introduction to Spanish and Hispanic cultures and civilizations. Only students with no previous Spanish should register for this course.
Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: None
Projected Offering: Fall

2236 SPANISH I/II
A one semester review of Elementary Spanish. All major topics covered in Spanish I and Spanish II will be reviewed. The course is aimed at students with any of the following backgrounds: 1. 2+ years of high school Spanish; 2. Lived in/near Latino community where Spanish language was often spoken; 3. Native/near-native speakers of another Romance Language (French, Italian, Portuguese, Catalán). Students must take online placement test: http://webcape.byuhtrsc.org/?acct=uscga. Password may be obtained by contacting either Dr. Rivero or Dr. Waid in the Department of Humanities.
Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: None
Projected Offering: Spring

2237 SPANISH II
A continuation of Spanish I. Requires compositions and oral classroom drill sessions. Includes introduction to Spanish and Hispanic cultures and civilizations.
Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: 2235
Projected Offering: Spring

2241 MODERN EUROPEAN CIVILIZATIONS
Explores the meaning and nature of three words: what is "modern?" What is "European?" What is "civilization?" The course examines the major social, cultural, economic, political, and international developments in Europe, from roughly 1700 through the end of World War II. Students will wrestle with issues of identity (national, cultural, and ethnic), evaluate the cultural and political elements that led to cooperation and conflict; and examine the causes/consequences of European interaction with Africa, Asia, and the western hemisphere. Course requirements include exams, papers, presentations, and substantial reading of primary sources.
Credit Hours: 3.00
Format: Lecture
Prerequisites: 2163
Projected Offering: Spring

2242 WORLD CIVILIZATIONS
Exposes cadets to grand forces that shape human civilization as we know it, while parsing out thematic similarities/differences across cultures, time and space. Course explores development of religion; concepts of security vs. freedom; role of government; evolution of economic systems; definition of citizen; relationship between human society and the environment; development of science and technology; communication/exchange between cultures; globalization/urbanization.
Credit Hours: 3.00
Format: Lecture/Discussion
Prerequisites: 2131, 2132, or 2133
Projected Offering: Spring

2265 COMPARATIVE POLITICS
Compares foreign political systems, ideologies and movements. Worldwide trends are explored and
selected country studies undertaken.
Credit Hours: 3.00
Format: Seminar
Prerequisites: 2163
Projected Offering: Spring

2267 AMERICAN CONGRESS
This course is designed to immerse students in the theory and practice of the United States Congress. Structured around the core functions of the legislative branch - representation, legislation, and oversight - this course begins with an intensive look at the conceptual foundations of Congress and transitions into a congressional simulation where students play the role of elected Members of Congress. Through the simulation, students will internalize theory while building an awareness of their role, as citizens and Coast Guard officers, in the American law-making process. This course will be offered every other year.
Credit Hours: 3.00
Format: Seminar
Prerequisites: 2163
Projected Offering: Spring

2269 NATIONAL SECURITY POLICY
Addresses the topic of U.S. national security policy from a historical, as well as contemporary, perspective. The course begins with the National Security Act of 1947, proceeds through the impact of the 1986 Goldwater-Nichols reforms, and ends with a consideration of the post-September 11, 2001 security environment.
Credit Hours: 3.00
Format: Class
Prerequisites: 2163, or Instructor approval
Projected Offering: Spring

2272 POLITICAL PARTICIPATION
Survey of the dominant modes of citizen participation in the American democratic system, including political parties, elections, interest groups, the media, social movements, and civil disobedience. Case studies include the media and the military; federal campaigns and elections; and violence in the American political tradition.
Credit Hours: 3.00
Format: Seminar/Project
Prerequisites: 2163
Projected Offering: Fall

2274 INTERNATIONAL POLITICAL ECONOMY
Following a survey of the primary IPE Paradigms (Realism, Liberalism, Structuralism) and history of the Bretton Woods Institutions (IMF, World Bank, GATT→WTO, FX regimes), the course focuses on topics and debates within the study of IPE: International Trade, LDC Debt, Multinational Corporations, International Monetary Issues, Energy and Oil, Sustainability/Green Politics, Food and Hunger, the Politics of Development and Globalization. Upon completion of the course, students are expected to: 1. Understand the logic and critique of the main theoretical perspectives of IPE; 2. Understand the policy aims of the IMF, World Bank, and WTO as well as the fiscal and monetary tools available to all central governments; and 3. Be conversant on a range of key issues within the field of IPE, including trade, debt, international monetary relations and development.
Credit Hours: 3.00
Format: Seminar
Prerequisites: None
Projected Offering: Fall

2276 CONTEMPORARY UNITED STATES FOREIGN POLICY
Explores U.S. foreign policy from the late Cold War period to the present. Using historical events as our
guide, we examine the foreign policy decision making process and its major actors, including the President, Congress, bureaucracy and the news media. We will conclude the course by taking a regionally organized look at foreign policy challenges confronted by the current administration. Readings for the course will include both text chapters and journal articles.

Credit Hours: 3.00
Format: Seminar
Prerequisites: 2163
Projected Offering: Spring

2281 INTELLIGENCE AND DEMOCRACY
This course is intended for Government majors. Exploration of the missions, organization, and processes of the U.S. Intelligence Community; the major debates about the roles, practices and problems of national intelligence; and the Coast Guard’s multi-mission intelligence roles. The course includes an examination of the various functions of intelligence including collection systems (both human and technical), critical analysis, intelligence writing, espionage and counterintelligence, covert action, and the role of intelligence in counterterrorism, trans-national and asymmetric threat.

Credit Hours: 3.00
Format: Seminar/Class
Prerequisites: 2163 and 2269
Projected Offering: Fall

2282 INTELLIGENCE AND CYBER OPERATIONS
This course is specially designed for cadets from all majors, including Government majors who are not in the Security Studies Concentration, who are interested in improving their understanding of national security policy and the national security process, with particular consideration given to the impact of current “cyber” challenges within our multi-discipline, multi-mission Coast Guard, and for the nation more broadly. The course reviews the evolution, organization, and responsibilities of the Intelligence Community, the modern national security process, and the role played by the Intelligence Community, homeland security, and law enforcement entities -- as well as other key policy actors and overseers -- within it. The course will explore how technology has affected intelligence collections, analysis, and dissemination. A special focus of this course will be the CG Cyber Strategy and study of cyber issues within the Coast Guard’s operational environment, including: port security, information assurance/protection, and infrastructure protection. Case studies and examples will be used to illustrate the processes, concepts, and debates regarding intelligence and its role in protecting American security. A secret security clearance is required.

Credit Hours: 3.00
Format: Seminar
Prerequisites: 2163
Projected Offering: Fall

2293 MORAL, ETHICAL, AND POLITICAL PHILOSOPHY
Examination of a range of philosophical views on what makes our actions right or wrong and our characters good or bad. Students are encouraged to develop their own moral voice, decision-making abilities, and a respect for the place of reasoned argument in the treatment of ethical problems.

Credit Hours: 3.00
Format: Class
Prerequisites: None
Projected Offering: Fall

2324 LITERATURE OF HUMANITY AND CONFLICT: U.S. LATINOS
This course examines how wars, revolutions, and social conflicts involving U.S. Latinos have been portrayed in American literature and film. Emphasizing the experiences of Cuban American, Mexican American, Puerto Rican, and Dominican groups, this course looks at how Latino fiction, poetry, drama, and essays are influenced by conflicts in the U.S., Latin America, and the Caribbean.

Credit Hours: 3.00
Format: Class
Prerequisites: 2111 or 2121 and 2131, 2132, or 2133
Projected Offering: Spring - Odd

2325 LITERATURE OF HUMANITY AND CONFLICT: EPICS AND MYTHS
This course explores how war, revolutions, and social conflicts have involved citizens of diverse cultures: Chinese, Egyptian, Greek, Hebrew, Nordic, Native American, Roman, and others. Discussions examine the humanistic side of military and personal conflicts through these early and modern narratives. Drawing from literature outside the traditional Western canon primarily, these studies emphasize the ways narratives unite and divide culture while touching upon gender, politics, ethnicity, and mythology. Using media (film, art, and Music) and literature (short stories, essays, epics, and plays), the course supports an analysis of the past and its intersection with present global cultures.
Credit Hours: 3.00
Format: Class
Prerequisites: 2111 or 2121 and 2131, 2132, or 2133
Projected Offering: Spring - Odd

2331 COAST GUARD SPANISH
Introduction to Coast Guard, military, nautical and other pertinent vocabulary in Spanish. Includes a review of basic Spanish.
Credit Hours: 1.00
Format: Class
Prerequisites: 2236, 2237 or equivalent
Projected Offering: Spring - Even

2335 SPANISH III
Includes grammar review; speaking and writing; selections from Spanish literature. Students not coming into this course from Spanish II or Spanish I/II at the Coast Guard Academy must take placement test at: http://webcape.byuhtrsc.org/?acct=uscg. Password may be obtained by contacting either Dr. Rivero or Dr. Waid in the Department of Humanities.
Credit Hours: 3.00
Format: Class
Prerequisites: 2236 or 2237
Projected Offering: Spring - Even

2336 CONVERSATIONAL SPANISH
A course designed to help students maintain language proficiency and develop stronger conversational skills. Weekly reflection journals are required in addition to active contributions to classroom conversation. Grades are based on quality of journals, class participation, and audio recordings evaluated for breadth of vocabulary, fluidity, pronunciation and grammatical sophistication.
Credit Hours: 1.00
Format: Class
Prerequisites: 2335 or equivalent
Projected Offering: Fall

2337 SPANISH IV
Continuation of Spanish III.
Credit Hours: 3.00
Format: Class
Prerequisites: 2335
Projected Offering: Spring

2338 CULTURE AND POLITICS OF LATIN AMERICA
This course will examine recent and current U.S. foreign policy toward Latin America, how strategic goals are made and implemented, and how policies and/or procedures (change or do not change) in the aftermath of a crisis. After a brief review of Latin American history and relations between the region and the United States, the course will examine U.S. reaction to recent political events and review and analyze current
programs designed to carry out U.S. foreign policy. The course will also examine the importance of past U.S. actions and historical context in formulating and implementing – and a country’s reaction to – new goals and programs.

Credit Hours: 3.00
Format: Class
Prerequisites: None
Projected Offering: Fall

2341 THE CIVIL WAR ERA
Evaluation of the causes, course and consequences of the American Civil War. Themes include the development of America in the 19th century, the impact of slavery, expansion, and social change, and interrelationship of social, economic, political, military, and diplomatic factors in the war.

Credit Hours: 3.00
Format: Class
Prerequisites: 2163
Projected Offering: Fall

2343 THE LATIN AMERICAN EXPERIENCE: A CULTURAL APPROACH
This course offers a panoramic view of Latin American issues, from pre-Hispanic cultures to the present, from an interdisciplinary perspective. Issues of identity, gender, race, ethnicity, human rights, environment, etc. will be approached through the study of Latin American literature, film and visual art. Weekly discussions of current affairs will allow cadets to make connections between the past and the present of Latin America. Classes will be enriched by presentations from guest speakers, as well as a field trip to an area museum/event. For students with sufficient fluency in Spanish (see 2344 course description for details), this course can be complemented with a one-credit course conducted in Spanish and taught simultaneously to further explore the topics discussed in class.

Credit Hours: 3.00
Format: Class
Prerequisites: 2131, 2132, or 2133
Projected Offering: Spring

2344 INTRODUCTION TO LATIN AMERICAN STUDIES: LITERATURE, FILM AND VISUAL ART
This is a one-credit course conducted entirely in Spanish that complements the three-credit course The Latin American Experience: A Cultural Approach (2343). It is aimed at students currently enrolled in the three-credit course but also at students who want to enhance their knowledge of Spanish and Latin American culture. It offers a panoramic view of Latin American issues, from pre-Hispanic cultures to the present, from an interdisciplinary perspective. Issues of identity, gender, race, ethnicity, human rights, environment, etc. will be approached through the study of Latin American literature, film and visual art. Besides further exploring the topics discussed in the three-credit class, students will be able to practice and improve their Spanish communication skills. In order to take this course, students must fulfill one of these language requirements: a) a minimum of a low-intermediate level of Spanish – Spanish III (2335) course offered at CGA or equivalent; b) a score in the Spanish placement test that indicates a low-intermediate level of Spanish or above; c) native/heritage speakers; d) instructor’s permission.

Credit Hours: 1.00
Format: Class
Prerequisites: 2335 or equivalent, or Instructor approval
Projected Offering: Spring

2352 CONFLICT RESOLUTION, DIPLOMACY, AND NEGOTIATION
Conflict Resolution serves as an upper division offering in the International Relations concentration. This course begins by considering the origins and nature conflict and explores potential ways of addressing areas of instability. Negotiation and mediation literatures undergird our study and frame our two main approaches to conflict resolution: positional bargaining versus principled negotiation. We use these basic ideas to inform our understanding of effective negotiation and diplomacy and enable us to improve our
competencies as practical negotiators. To cement the theoretical precepts, we use case studies and simulation exercises to put our new learning to the test. Perhaps Dean Acheson said it best in his rumination that "He who has learned to disagree without being disagreeable has discovered the most valuable secret of a diplomat."

Credit Hours: 3.00
Format: Seminar
Prerequisites: 2367
Projected Offering: Spring

2355 **PUBLIC POLICYMAKING**

A seminar evaluating the American policymaking process. Focusing on the interrelationship between policymaking institutions (the Presidency, Congress, courts, bureaucracy, and regulatory agencies) and individual and organizational participants (interest groups, political parties, stakeholders, media, and citizens), it identifies and evaluates the policy processes and politics that characterize American national government. Case studies focus on environmental, regulatory, immigration and economic policy areas.

Credit Hours: 3.00
Format: Class
Prerequisites: 2163
Projected Offering: Fall

2358 **POLITICS OF NORTH AFRICA AND THE MIDDLE EAST**

Following a survey of history and politics that covers the vast geographical region between North Africa (Marrakech) and the Melanesian Crescent (Jakarta), we delve into case studies under the following regional headings: 1) the Maghreb; 2) Egypt and the Sudan; 3) the Levant; and 4) the Arabian peninsula and beyond (including Afghanistan, Pakistan and some of the Asia-Pacific regions that have been influenced by Islamic religion and culture), with an emphasis on the littoral/security concerns of the region. Upon completion of this course, students are expected to: have a general knowledge of the history of North Africa & the Middle East and appreciate the historical ties and ongoing influences of Islamic religion and culture further east, i.e. through to the Philippines, Indonesia, etc; be familiar with the terminology used within the subfield of North African & Middle Eastern ("Orientalist") studies; retain an “intellectual framework” for many of the ongoing scholarly debates within the subfield of North African & Middle Eastern studies; and be well prepared for further study within this subfield.

Credit Hours: 3.00
Format: Class
Prerequisites: 2265
Projected Offering: Fall

2359 **AFRICAN POLITICS**

Following a survey of the pre-colonial history of the African continent, 2359 reviews the impacts of the colonial era and the history of African state formation, African political practices and ideas, recent events in North Africa, and ongoing debates regarding the politics of development in the sub-Saharan African region. Particular emphasis is placed on areas of possible interest to the U.S. Coast Guard and the new (2008) U.S. Africa Command including the Gulf of Guinea and the Horn of Africa.

Credit Hours: 3.00
Format: Class
Prerequisites: 2265
Projected Offering: Fall

2360 **SELECTED TOPICS IN PHILOSOPHY**

Seminar on topics drawn from historical and contemporary philosophical thought. Topics will vary each semester, and will be determined by a survey of student interests. Topics may include Eastern philosophy, American philosophy, 20th century philosophy, existentialism, philosophy of religion, philosophy in literature and drama, theory of knowledge, metaphysics, or any philosophical field other than ethics and political philosophy.

Credit Hours: 3.00
2361 INTRODUCTION TO POLITICAL THEORY
This course is designed to introduce students to political theory; that is, to learn how to think theoretically about political issues. Students will be taught to examine how worldviews are constructed, how different conceptions of human nature inform political perspectives as well as how to adjudicate the tension between theoretical insights and chaotic lived complexities. Together, we will read both influential theorists (e.g. Sophocles, Machiavelli, Marx, Arendt, Freud and Fanon) as well as consider contemporary applications of their observations. In order to organize a vast amount of political history and theory, we will focus our understanding on the various ways political theorists have conceived and debated what constitutes political freedom. We will ask not only what it means to be free, but even whether we want to be free. Further, we will examine the obstacles to freedom, as well as what kind of political authority helps to insure freedom. We will pursue these questions, in part, through examinations of Nazi Germany and the trial of Adolf Eichmann, the US civil rights movement and the construction of racial identity and the economic configurations of freedom under global capitalism. Further, students will be encouraged to consider as secondary themes in the readings: the relationship between vision and knowledge as well as between travel and theory. Finally, students will explore how the various genres of political theory (i.e. theatre, treatise, music and film) influence the kind of political life imagined and the theoretical possibilities developed.
Credit Hours: 3.00
Format: Class
Prerequisites: None
Projected Offering: Spring

2362 HOMELAND SECURITY POLICY
Across a range of challenges to the United States – immigration and border security, critical infrastructure protection, maritime counterterrorism, disaster preparedness and response – this course integrates the theory and practice of homeland security. Recognizing the unique and evolving environment that future Coast Guard officers will face, heavy emphasis is given to the policy, strategic, operational, and tactical dimensions of securing the homeland. Beyond the statutory missions of the Coast Guard, careful study is given to key actors, institutions, and processes – federal, state, local, private, and international – that comprise the homeland security policy space. Through an emphasis on policy analysis and critical thinking, the course explores the challenges and opportunities posed by homeland security, and examines how our government is evolving to adapt to them. This course will be offered every other year.
Credit Hours: 3.00
Format: Class
Prerequisites: 2163
Projected Offering: Fall - Even

2363 CONTEMPORARY POLITICAL THEORY
Political theory brings together two seemingly incompatible realms– the messy, contingent world of human beings living in community and the interpretations, understanding and meanings human beings construct for how to do so productively, happily and with minimal conflict. This course is an exploration of some of the contemporary configurations of that juxtaposition in a post 9/11 world. The course will focus this semester on contemporary (and historical) understandings of revolution and the transition to democracy. Readings will include Hannah Arendt’s On Revolution as well as contemporary thinkers Paul Gilroy, John Fornan and Tariq Ramadan. We will consider, also, how we live with the pluralism in our American midst and what, if any, are our responsibilities to those who are far away. Readings on this issue will include a novel on Mexican/American immigration and contemporary debates about race and incarceration as the “new Jim Crow.” Finally, we will explore the ethos and possibilities of reconciliation and the role of national apologies post 9/11. Here readings will focus on the work of South African Archbishop Desmond Tutu as well as political theorist Anthony Appiah on the ethics of humanitarian intervention.
Credit Hours: 3.00
Format: Seminar
Prerequisites: 2163
Projected Offering: Fall

2367 INTERNATIONAL RELATIONS
A critical examination of the classical and contemporary international relations theories. The conditions that enhance or diminish security in the international system are explored and the influence of individuals, states, and nongovernmental, regional, and international organizations on each other and the overall global community are compared and discussed.
Credit Hours: 3.00
Format: Seminar
Prerequisites: 2265
Projected Offering: Fall

2370 AMERICAN PRESIDENTIAL POLICY
This course examines the roles of the President, the Cabinet departments, White House staff and Executive Office agencies in making foreign and domestic policy. It examines the organization and management of the executive branch’s policymaking processes as well as executive-congressional relations, and their dynamic impact on the policy-making process. This course will be offered every other year.
Credit Hours: 3.00
Format: Seminar
Prerequisites: 2163
Projected Offering: Spring - Odd

2371 AREA STUDIES
The role of historic, social, economic, and cultural forces in framing the political system of a nation or a geographic area is examined. The area studied is based upon teaching resources in the department.
Credit Hours: 3.00
Format: Seminar
Prerequisites: 2163, 2265
Projected Offering: Fall or Spring

2373 THE RELIGION AND POLITICAL PHILOSOPHY OF ISLAM
Provides an introduction to Islam by exploring its historical development, with a particular emphasis on Islamic theology and philosophy, up to and including contemporary developments. Students will become familiar with the origin and development of Islam, with the unity and diversity of Islam, with classical Islamic philosophy and theology, with the rise and fall of Islamic dynasties and empires, and with the rise of fundamentalist Islam. Students will explore key contemporary issues within Islam, especially the issues of war, women, and democracy, and will examine predominantly Islamic nations in light of what they have studied.
Credit Hours: 3.00
Format: Seminar
Prerequisites: None
Projected Offering: Spring

2374 IRREGULAR WAR
This course examines one of the most vexing problems of our time-how and when should the United States effectively engage in the unstable regions around the world? These non-traditional missions have included reconstruction and stabilization, peace operations, and counterinsurgency: they have been called limited war, irregular war, operations other than war, and most recently, "hybrid war." We will explore these operations and seek to answer three fundamental questions: What is irregular warfare and is it different than the conflicts of the past? Who is the enemy--and why is it important to understand the enemy within the broad typology of enemies faced? How should the U.S. retool its approach to better perform this critical mission? In our study of irregular warfare, we will undertake an examination of irregular warfare's causes and actors, recent policy developments, and perhaps most importantly seek greater understanding of how to effectively design a mission to confront this "new enemy"-- and win.
89

Credit Hours: 3.00
Format: Seminar
Prerequisites: 2367
Projected Offering: Spring

2375 STRATEGIC INTELLIGENCE: COLLECTION AND ANALYSIS
The global environment of the past decade raises new questions about American security and America’s vulnerability to global threats. It also focused new attention on the U.S. Intelligence Community (IC): its interactions with policymakers, how it is organized, how it works, and the products it generates in support of homeland and national security decision and policy makers. This course is designed to explore the "how it works" aspect of the IC, the "business" of intelligence, most notably the intelligence process with specific emphasis on collection systems (both human and technical) and the critical thinking, analysis, writing and dissemination of finished intelligence analysis specifically in the areas of transnational asymmetric threats. Finally it provides a look at how intelligence analysis supports policymakers in a democratic society. A special focus of the course is Coast Guard Intelligence, its binary role as both a law enforcement agency and a member of the U.S. Intelligence Community, and its roles related to homeland and national security.
Credit Hours: 3.00
Format: Class
Prerequisites: 2269, 2281
Projected Offering: Spring

2376 AMERICAN POLITICAL CULTURE
Explores the multiple debates and struggles which have animated the construction of “American identity” since the days of the Puritans. Central to this course will be discussions of how religion, race and gender were pivotal to forming notions of American identity. The course will begin with Mary Rowlandson’s captivity narrative as a way to consider early Puritan understanding of a relationship with God, nature and Native Americans. Readings will continue with a biography of Anne Hutchinson and debates about the relationship among church, state and gender. Additional readings will likely include Frederick Douglass’ autobiography, Hannah Arendt’s On Revolution, as well as selections from Joyce Appleby’s Inheriting the Revolution. We will also be reading substantial selections from Alexis de Tocqueville’s Democracy in America, including the appendices on Native Americans and black chattel slavery. Additional topics will include debates about “ideal citizens” from confrontations with 19th century Mormons, to the trial of Italian immigrants Sacco and Vanzetti as well as the internment of Japanese Americans during WWII. The course will conclude with an examination of contemporary debates surrounding American political identity, including the gay/lesbian civil rights movement, conceptions of assimilation (particularly regarding the use of the English language) as well as developing arguments regarding the changing role of Muslim Americans in the American body politic.
Credit Hours: 3.00
Format: Seminar
Prerequisites: 2163
Projected Offering: Fall

2377 POLITICS OF CHINA
The Politics of China course serves as an upper division offering in the International Relations concentration. The course is designed to provide a background for one’s understanding of modern Chinese politics with an emphasis on the mainland in the post-Mao reform era while examining major challenges confronting China today. Key topics include modern political history, political culture and ideology, political institutions, political processes, the Chinese Communist Party, the role of the military, foreign affairs, economic development, and special regions such as Hong Kong, Taiwan, and Tibet. By the end of the semester, students should be able to gain a better understanding of the current developments in Chinese politics.
Credit Hours: 3.00
Format: Class
Prerequisites: 2367
Projected Offering: Fall
2378 ASIA IN WORLD AFFAIRS
This course is a general survey of the politics of Asia, with an emphasis on contemporary Pacific Asia. Starting with the general environment of Asia, this course covers the history, politics, and international relations of major Asian powers and discusses the main economic and security issues that concern Asian countries today. Upon completion of the course, students are expected: 1) to be familiarized with the international and domestic politics of Asia; 2) to gain a better understanding of the historical and current developments of Asian countries; and 3) to apply international relations concepts and theories to the study of Asia.
Credit Hours: 3.00
Format: Class
Prerequisites: 2367
Projected Offering: Fall

2379 STUDY OF THE KORAN
In this 1-credit course, students will read the entire Koran, in addition to an easy secondary source which helps to explain the Koran. Topics discussed will include differences in translations, views regarding the nature of the Koran, the importance of revelation order, different interpretations and interpretive strategies (including the debate over abrogation) and the relation of the Koran to other sacred scriptures. There are no prerequisites for this course, which does not presuppose any background in Islam. This course is normally taken by non-Government majors; Government majors may take it only with instructor permission.
Note: Cadets may take either 2373 or 2379, but may not take both.
Credit Hours: 1.00
Format: Seminar
Prerequisites: None
Projected Offering: Spring

2392 MARITIME STUDIES: SELECTED TOPICS
First Class seminar on maritime cultures, history, economics, politics, law, governance, geopolitics, transportation, safety, or security topics that vary each semester and span different disciplinary perspectives. Topics determined annually. Seminar requires exploration of the maritime domain through readings, seminar discussions, and research and writing requirements.
Credit Hours: 3.00
Format: Seminar
Prerequisites: None
Projected Offering: Fall and Spring

2393 MORAL AND ETHICAL PHILOSOPHY
Examination of a range of philosophical views on what makes our actions right or wrong and our characters good or bad. Students are encouraged to develop their own moral voice, decision-making abilities, and a respect for the place of reasoned argument in the treatment of ethical problems.
Credit Hours: 3.00
Format: Class
Prerequisites: None
Projected Offering: Fall and Spring

2394 ETHICS
Description: TBD
Credit Hours: 2.00
Format:
Prerequisites:
Projected Offering: Fall and Spring

2395 RHETORIC AND COURTROOM ADVOCACY
A year-long (fall and spring semester) course to promote your public speaking and advocacy skills, which will be honed while preparing for and representing one party in mock trials. At the conclusion of this
course, the student will: (1) be a more refined speaker; (2) be skilled at persuasively advocating a particular viewpoint before a decision-maker; (3) be familiar with the fundamentals of litigation in a courtroom setting; and (4) be more comfortable speaking in front of a group of people. Extensive out of class preparation is required, as is mandatory attendance at the off-site mock-trial competitions (usually two/semester).
Credit Hours: 1.00 per semester; full-year course
Format: Seminar
Prerequisites: None
Projected Offering: Fall and Spring

2396 NATIONAL SECURITY LAW
Examines the emerging and dynamic field of national security law by exploring the interplay of myriad legal and political issues and concepts, including: Constitutional "war powers" and the separation of powers; "just war" theory; the Geneva Conventions and the law of armed conflict (aka, International Humanitarian Law); jus cogens norms; detention of (un)lawful combatants; military law and commissions; foreign affairs; surveillance, interrogation, and other intelligence collection law; and related 1st, 4th, and 5th Amendment jurisprudence. This course will be offered every other Fall. It is open to first and second class cadets.
Credit Hours: 3.00
Format: Seminar
Prerequisites: 2163
Projected Offering: Fall - Odd

2397 CONSTITUTIONAL LAW AND HOMELAND SECURITY
A study of the principal provisions of the U.S. Constitution and the methods by which American government officials, including judges, legislators, and Presidents, give meaning to those provisions. The course will specifically emphasize civil liberty concepts and the function of the Constitution in the realm of Homeland Security.
Credit Hours: 3.00
Format: Seminar
Prerequisites: 2361
Projected Offering: Spring

2398 LAW
Description: TBD
Credit Hours: 4.00
Format:
Prerequisites:
Projected Offering: Fall and Spring

2421 SPECIAL STUDIES IN HUMANITIES
Advanced tutorial concentrating on a specific topic in literature, philosophy, history, the arts or foreign language. Intensive reading and consultation with a faculty member culminating in a major project or portfolio. Limited to advanced students with previous significant course work in the humanities. This course may not substitute any major requirement without Department Head approval.
Credit Hours: 3.00
Format: Class/Seminar
Prerequisites: None
Projected Offering: Fall or Spring

2429 THE CRAFT OF CREATIVE WRITING
This course provides students with the opportunity to learn the craft of writing creative works, and provides them with an understanding of critical elements necessary for the creation of effective short stories, poems, and short plays. Students will share their writing in a group setting in order to improve skills through constructive criticism and supportive comment. Grading criteria will mostly be based on students’ ability to
use literary tools (e.g., metaphor, setting, irony . . .) in their own creative works.
Credit Hours: 3.00
Format: Class
Prerequisites: 2111 or 2121
Projected Offering: Fall or Spring

2439 ADVANCED SPANISH
Rotating topics. This is an advanced conversation course. Students will be responsible for in-depth reading and analyses of literary, cultural, artistic or cinematic works. Grading based on in-class participation, papers and tests.
Credit Hours: 3.00
Format: Class/Seminar
Prerequisites: 2337 or equivalent
Projected Offering: Fall

2463 MARITIME POLICY AND STRATEGY
Focuses on national and international policy processes, institutions, and dimensions that comprise maritime policy systems at the national and international levels. Influences and constraints that affect policy formulation and implementation are investigated, including how human values, institutions, cultures, and history shape maritime issues and policy responses. Theoretical and methodological frameworks in public policy, such as the tragedy of the commons and public choice theory, are used to assess the efficiency, effectiveness, and efficacy of U.S. and international maritime policies and policy systems at the beginning of the 21st century. Topics include developments in ocean and waterways use since mid-century and contemporary challenges in maritime governance, safety, and security.
Credit Hours: 3.00
Format: Seminar
Prerequisites: 2355
Projected Offering: Fall

2465 UNITED STATES MILITARY POLICY
Examine American military strategy from the colonial period to the present. Course background originates with definitions of key ideas and terms, and the historical antecedents and influences of the colonial era. The course then moves into a chronological discussion of the major events, periods, and influences pertaining to American military affairs. We cover policy and strategy; we'll see a bit on operations, but no tactics. Course themes include the relationship between American culture and war making; the links between national policy, foreign policy, military policy, and military strategy; and the issue of civil-military relations, including not only civilian control of the military, but also the influence of American society upon the military as an institution. This course hopes to explain - and question-the nature and motives of American war making, the roles of a variety of players in policy making (public, private, civilian and military), and the connections between society's values/goals and the use of the military.
Credit Hours: 3.00
Format: Seminar
Prerequisites: 2163, 2355 or Instructor Approval for non-Government Majors
Projected Offering: Spring

2467 ENVIRONMENTAL POLICY AND ETHICS
Examines environmental ethics and U.S. environmental policy, both separately and in terms of how the two interact. We will examine U.S. environmental policies, with particular focus on policies regarding biodiversity, pollution control, waste disposal, and maritime environmental protection. We will look at various policymaking frameworks, especially administrative rationalism, democratic pragmatism, economic rationalism, and ecological democracy. We will cover both anthropocentric approaches to environmental ethics (such as human rights, sustainability, future generations, and environmental justice) and non-anthropocentric approaches (such as deep ecology, ecofeminism, biocentrism, and bioregionalism). We will consider both policy implications of various ethical approaches to the environment and the ethical foundations of various ways of evaluating environmental policies, with a
particular focus on market-based policies (such as “cap-and-trade”) and regulatory policies (such as the Marine Mammal Protection Act).
Credit Hours: 3.00
Format: Seminar
Prerequisites: 2355
Projected Offering: Spring

2468 RELIGION, POLITICS AND GLOBALIZATION
This course is an examination of the complex matrix of globalization, religion and contemporary political issues. To begin to understand this terrain, we will read theories of globalization exploring the movement of people, ideas and capital as well as various theories of the relation between religion and violence as well as between religion and reconciliation. Specifically, we will examine the ways in which the forces of globalization have created both more religious tolerance as well as in some instances more religious conflict. We will also spend time at the end of the semester thinking through the religious grounding of human rights discourse as well as the theo-political claims for humanitarian intervention.
Credit Hours: 3.00
Format: Seminar
Prerequisites: 2361
Projected Offering: Fall

2469 INTERNATIONAL DEVELOPMENT
In the course, we consider the many ways international development has become central to international relations. Following a survey of colonial encounters in world history, we discuss the era of nationalism and independence, and the politics of post-colonial development, in two time frames: the Cold War and Post-Cold War. We survey how, during the Cold War, many working in international development tried to look beyond ideology to achieve various forms of “development” and how, at least initially, much of the focus was on increasing Gross National Product and the overall output of goods and services, as valued by markets. We consider how these and other developmental aims were often thwarted by a broader ideological conflict with the Soviet Union and concerns over US security. Through a consideration of the extant literature, we consider how/why many say the Post-Cold War world is different and how this could well translate to greater developmental success in the twenty-first century. Pro and anti-aid arguments are considered as well as some of the Post-Cold War critiques of Cold War developmental practice. With this background students are asked to consider, through case studies, some of the policy changes that have taken place since the fall of the Berlin Wall, to include the ongoing challenges to many dictatorships throughout the world. Particular emphasis is placed on areas of strategic interest to the U.S.
Credit Hours: 3.00
Format: Seminar
Prerequisites: 2367
Projected Offering: Fall

2472 TRANSNATIONAL THREATS AND CHALLENGES
This course educates Coast Guard Officers of the 21st Century by providing an overview of transnational security, challenges and their effects on the political, economic and security elements of society. For the purposes of this course, threats are construed as those issues which promote instability and for which current policy, management and leadership paradigms struggle to successfully coordinate action and mitigate effects. The course examines an array of threats including criminal enterprises that traffic in people, weapons, and drugs as well as non-criminal challenges including public health threats and environmental and energy security. The course closely examines the legal, political, policy and law enforcement responses employed at the national and international level to mitigate transnational threats within the context of globalization.
Credit Hours: 3.00
Format: Seminar
Prerequisites: 2163, 2367, or Permission of Instructor
Projected Offering: Spring
2485 GLOBAL STUDIES
Description: TBD
Credit Hours: 3.00
Format:
Prerequisites:
Projected Offering: Fall and Spring

2494 INTERNATIONAL LAW
The study of the principles of international law and the role(s) of international organizations. The emphasis
will be on the function of international law in international relations and the effectiveness of international
law in regulating the actions of state and non-state actors. The course will also take an in-depth look at
sovereignty and the law of armed conflict.
Credit Hours: 3.00
Format: Seminar
Prerequisites: 2163
Projected Offering: Fall

2495 ADVANCED STUDIES IN GOVERNMENT
Advanced Studies in Government allows students to undertake original scholarship and research on
political systems and governmental institutions, programs, and policies both domestically and
internationally. Two alternatives comprise this senior level study. First, cadets may be selected for an
externally sponsored and nationally recognized scholars program such as the Center for the Study of the
Presidency or Joint Service conference scholars program. The second option is for cadets to compete for an
internship with Connecticut State government. Past placements for Connecticut internships have included
the Office of the Attorney General and the Governor’s Office. This course requires the production of an
original research paper or participation in the internship. This course will count as the cadet’s Capstone
Requirement.
Credit Hours: 3.00
Format: Class/Project/Seminar
Prerequisites: Placement through Academic Excellence Opportunity application only
Projected Offering: Fall or Spring (Fall preferred)

2497 SENIOR THESIS IN GOVERNMENT
The Senior Thesis facilitates specialization within the Major Concentration through an independent
research project under the supervision of a two-person faculty committee, at least one of whom must be a
member of the permanent faculty with terminal degree. The Senior thesis results in a substantial written
product and an oral defense of the thesis. This course will count as the cadet’s Capstone requirement.
Credit Hours: 3.00
Format: Class/Project/Seminar
Prerequisites: Placement through Academic Excellence Opportunity application only
Projected Offering: Fall or Spring (Fall preferred)

2499 ADVANCED RESEARCH PROJECTS
Team-based original research projects entailing field and/or applied research for highly qualified cadets.
Project requires a major academic commitment to the design and/or assessment of governmental strategies,
policies, programs, capabilities, and/or organizations at the national or international level. Project also
requires development of advanced research competencies. Oral briefings and final research reports are
required. Cadet projects are supervised jointly by faculty and sponsoring agency teams.
Credit Hours: 3.00 per semester
Format: Directed Study
Prerequisites: Permission of supervising team, CGPA of 3.00 or higher
Projected Offering: Fall and Spring

3107 FOUNDATION FOR CALCULUS
Study of mathematical foundation material as preparation for 3111, Calculus I. Topics include
mathematical notation, function families, algebra, trigonometry, exponentials, logarithms and the use of mathematical software.
Credit Hours: 4.00
Format: Class/Project
Prerequisites: Department Head approval
Projected Offering: Fall

3111 CALCULUS I
Presentation of the fundamental concepts of functions, limits and differential calculus with an introduction to integral calculus. Techniques and applications of differentiation and calculating areas as limits are explored. A computer algebra system is utilized for both technical computations and computer analysis during the course.
Credit Hours: 4.00
Format: Class/Project
Prerequisites: Department Head approval
Projected Offering: Fall and Spring

3115 CALCULUS II (V)
Same topics as Calculus II (3117) treated in depth and at a pace consistent with the ability of the class. A computer algebra system is utilized for both technical computations and computer analysis during the course.
Credit Hours: 4.00
Format: Class/Project
Prerequisites: Department Head approval
Projected Offering: Fall

3117 CALCULUS II
Further extensive study of the fundamental concepts of differential and integral calculus. Topics include logarithmic, exponential, inverse trigonometric functions, vectors, vector valued functions, integration techniques, applications of the definite integral, improper integrals, and infinite series. A computer algebra system is utilized for both technical computations and computer analysis during the course.
Credit Hours: 4.00
Format: Class/Project
Prerequisites: 3111
Projected Offering: Spring and Summer

3211 MULTIVARIABLE CALCULUS
An introduction to differential and integral calculus for functions of several variables. Topics include surfaces in three dimensional space, partial differentiation, multiple integration, and vector calculus. A computer algebra system is utilized for both technical computations and computer analysis during the course.
Credit Hours: 3.00
Format: Class
Prerequisites: 3115 or 3117
Projected Offering: Fall and Spring

3213 PROBABILITY AND STATISTICS
An exploration of the basic concepts and rules of probability, as well as the fundamentals of statistics. Utilizing a data analysis computer program, students learn to explore, describe and summarize data. Statistical methods are presented and applied to contexts including opinion polls, financial management and engineering applications. Emphasis is placed on the development of proper statistical reasoning and how it applies to the analysis of data, with particular attention paid to the validity of necessary assumptions.
Credit Hours: 3.00
Format: Class/Project
Prerequisites: 3111
Projected Offering: Fall and Spring

3215 DIFFERENTIAL EQUATIONS
An intermediate course in the methods of solving ordinary differential equations. Topics include first order equations, higher order linear equations, Laplace transforms, systems of equations, power series solutions, numerical methods and applications.
Credit Hours: 3.00
Format: Class
Prerequisites: 3115 or 3117
Projected Offering: Fall and Spring

3221 LINEAR ALGEBRA
The study of mathematical systems with emphasis on vector spaces, linear transformations and matrices. Topics include systems of linear equations, vector spaces, linear mappings, determinants and eigenvalue problems. Computer analysis is utilized.
Credit Hours: 3.00
Format: Class/Project
Prerequisites: 3115 or 3117
Projected Offering: Fall

3231 LINEAR OPTIMIZATION
The theory and application of deterministic models of operations research used in the optimization of linear functions of several variables subject to linear constraints. Topics include linear programming, simplex-based methods, sensitivity analysis, and integer programming. Computer analysis is utilized.
Credit Hours: 3.00
Format: Class/Project
Prerequisites: 3115 or 3117
Projected Offering: Fall

3235 COMPUTER MODELING LANGUAGES
An introduction to programming languages for computer modeling. Topics include programming fundamentals, decision structures, data structures, algorithms, objects and software design. Exercises with an emphasis on mathematical applications enable students to design and build effective computer programs.
Credit Hours: 3.00
Format: Class/Project
Prerequisites: 3115 or 3117, and 1104 or permission of instructor
Projected Offering: Spring

3236 INFORMATION SYSTEMS
An introduction to computer information systems development utilizing databases. Topics include computer hardware and software, software design and development processes, database concepts, database design, and database applications development with Access and Excel. Exercises and a project with an emphasis on decision support applications enable cadets to develop information systems that are well structured and exploit database technology.
Credit Hours: 3.00
Format: Class/Project
Prerequisites: 3235 or permission of instructor
Projected Offering: Spring

3237 DISCRETE MATHEMATICS
An introduction to discrete methods and selected applications. Topics include fundamentals of logic, methods of proof, elementary number theory, set theory, mathematical induction, counting techniques, recursion, and O-notation.
Credit Hours: 3.00
Format: Class/Project
Prerequisites: 3115 or 3117
Projected Offering: Spring

3301 ADVANCED ENGINEERING MATHEMATICS
An upper division course for Engineering majors designed to provide a background and working knowledge of Linear Algebra and Probability and Statistics. The primary objectives are to develop a basic understanding of matrix algebra techniques and probability and statistical theory, utilize these concepts in solving a variety of Engineering applications, and the ability to read and discuss the fundamentals of the topics introduced. Computer projects will be assigned to enable students to solve more complex problems further demonstrating the application of the concepts to Engineering applications.
Credit Hours: 4.00
Format: Class
Prerequisites: 3215
Projected Offering: Spring

3333 NETWORK AND NONLINEAR OPTIMIZATION
The theory and application of network problems, nonlinear programming, and dynamic programming. Computer analysis is utilized.
Credit Hours: 3.00
Format: Class/Project
Prerequisites: 3211, 3231 or permission of instructor
Projected Offering: Fall

3334 INTERMEDIATE DETERMINISTIC MODELS
Description: TBD
Credit Hours: 3.00
Format: Class/Project
Prerequisites: 3333
Projected Offering: Spring

3337 ALGORITHMS WITH APPLICATIONS
Description: TBD
Credit Hours: 3.00
Format: Class/Project
Prerequisites: 3236 or permission of instructor
Projected Offering: Spring

3341 PROBABILITY THEORY
A rigorous development of probability theory necessary for advanced work in mathematics, statistics, operations research, and engineering. Topics covered include combinatorial methods, probability rules, discrete and continuous random variables, multi-dimensional distributions, moments and moment generating functions, special distributions, functions of random variables, and the central limit theorem. Computer analysis is utilized.
Credit Hours: 3.00
Format: Class
Prerequisites: 3211
Projected Offering: Fall

3343 MATHEMATICAL STATISTICS
A mathematical development of sampling distributions and the methods and theory of statistical procedures such as point estimation, confidence intervals, and hypothesis tests design. Topics include the Neyman-Pearson Lemma, generalized likelihood ratio testing, contingency tables, and goodness of fit. Computer analysis is utilized.
Credit Hours: 3.00
Format: Class
Prerequisites: 3341
3351 PROBABILITY MODELS
An introduction to stochastic models used to describe dynamic systems. Topics include Markov Chains, queuing systems, reliability theory, and forecasting. Applications are examined from many areas with an emphasis placed on Coast Guard related systems. Computer analysis is utilized.
Credit Hours: 3.00
Format: Class/Project
Prerequisites: 3221 and 3341
Projected Offering: Spring

3447 LINEAR REGRESSION
The fundamental development of simple and multiple linear regression models is discussed with emphasis on estimation and inference techniques and the associated assumptions. Computer analysis is utilized.
Credit Hours: 3.00
Format: Class/Project
Prerequisites: 3221, 3343 or 3213
Projected Offering: Fall

3453 DECISION MODELS
An introduction to decision analysis, risk, utility theory, game theory, inventory models and other topics in decision modeling. Computer analysis is utilized.
Credit Hours: 3.00
Format: Class/Project
Prerequisites: 3221, 3341
Projected Offering: Fall

3463 SIMULATION WITH RISK ANALYSIS
Introduction to computer simulation and modeling of real-world systems. Design, implementation, and validation of computer models of discrete and continuous systems are considered. Topics include principles of computer simulation methodologies, data collection and analysis, selecting distributions, and analysis of results. Individual and group projects are an integral part of this course.
Credit Hours: 3.00
Format: Class/Project
Prerequisites: 3343
Projected Offering: Fall

3470 OPERATIONS ANALYSIS PREPARATION
A capstone preparation course including familiarization with software and prior capstone reports, project selection and interaction with project sponsors. Skills related to formulation of problem statements, identifying data requirements as well as reading, writing and presenting technical reports are emphasized. Required for all Operations Research and Computer Analysis majors during the fall semester of first class year unless waived by the Head, Department of Mathematics.
Credit Hours: 1.00
Format: Class/Project
Prerequisites: None
Projected Offering: Fall

3471 OPERATIONS ANALYSIS
A capstone project course applying mathematical, statistical, computer programming and/or operations research techniques to problems related to Coast Guard missions and other areas of interest. Required for all Operations Research and Computer Analysis majors during the spring semester of first class year.
Credit Hours: 4.00
Format: Class/Project
Prerequisites: 3447, 3470
Projected Offering: Spring
3479 DIRECTED STUDIES IN OPERATIONS RESEARCH
A semester or more of individual work on a topic approved by the Head, Department of Mathematics.
Credit Hours: 3.00
Format: Directed Studies
Prerequisites: None
Projected Offering: Fall and Spring

3482 SELECTED TOPICS IN MATHEMATICS
This course will explore advanced topics in mathematics. Potential topics include advanced calculus, complex variables, intermediate differential equations, and topology. Specific course content will vary based on institutional and organizational needs, student and faculty interest, and current topics in the field.
Credit Hours: 3.00
Format: Class
Prerequisites: Topic Dependent
Restrictions: Permission of Instructor
Projected Offering: Fall or Spring

3483 SELECTED TOPICS IN OPERATIONS RESEARCH
This course will explore advanced topics in operations research. Potential topics include continuous time simulation, game theory, and advanced topics in optimization. Specific course content will vary based on institutional and organizational needs, student and faculty interest, and current topics in the field.
Credit Hours: 3.00
Format: Class
Prerequisites: Topic Dependent
Restrictions: Permission of Instructor
Projected Offering: Fall or Spring

3484 SELECTED TOPICS IN STATISTICS
This course will explore advanced topics in statistics. Potential topics include statistical learning, non-parametric statistics, Bayesian statistics, robust statistics and exploratory data analysis. Specific course content will vary based on institutional and organizational needs, student and faculty interest, and current topics in the field.
Credit Hours: 3.00
Format: Class
Prerequisites: Topic Dependent
Restrictions: Permission of Instructor
Projected Offering: Fall or Spring

3485 SELECTED TOPICS IN COMPUTER ANALYSIS
This course will explore advanced topics in computer analysis. Potential topics include algorithms, complexity, numerical analysis and programming languages. Specific course content will vary based on institutional and organizational needs, student and faculty interest, and current topics in the field.
Credit Hours: 3.00
Format: Class
Prerequisites: Topic Dependent
Restrictions: Permission of Instructor
Projected Offering: Fall or Spring

4101 DEVELOPMENTAL SWIMMING
Developmental Swimming is designed to provide cadets who have been identified as weak swimmers with supplemental instruction in swimming.
Credit hours: 0.00
Format: Laboratory
Prerequisites: None
Projected Offering: Fall
4102 PRINCIPLES OF FITNESS AND WELLNESS I
This course introduces cadets to the basic concepts and principles of lifelong fitness and wellness. Special attention will be given to the areas of cardiorespiratory fitness, muscular strength and endurance, and flexibility. Cadets will be expected to apply basic exercise physiology principles in the development and maintenance of personal fitness programs.
Credit Hours: 1.00
Format: Class/Laboratory/8-Week
Prerequisites: None
Projected Offering: Fall

4103 PERSONAL DEFENSE I
Personal Defense I is an introductory level course designed to foster the development of personal defense skills. Upon completion of the course, cadets will be able to anticipate potentially unsafe situations and be able to better protect themselves. This course serves as the foundation for maritime law enforcement skills (Personal Defense II).
Credit Hours: 0.25
Format: Laboratory/8-Week
Prerequisites: None
Projected Offering: Fall and Spring

4111 SWIMMING
Swimming is an introductory level course designed to develop fundamental skills in both survival and competitive strokes. By the end of the course, cadets should be competent swimmers and comfortable in the water.
Credit Hours: 0.25
Format: Laboratory/8-Week
Prerequisites: None
Projected Offering: Fall

4112 PRINCIPLES OF FITNESS AND WELLNESS II
This course introduces cadets to the basic concepts and principles of lifelong fitness and wellness. Special attention will be given to the areas of nutrition, stress management, and the adoption of healthy lifestyle behaviors.
Credit Hours: 1.00
Format: Class/Laboratory/8-Week
Prerequisites: 4102
Projected Offering: Spring

4204 LIFETIME SPORTS I: RACQUETBALL
Racquetball is an introductory level course designed to foster the development of fundamental skills in racquetball and to support cadet commitment to lifelong participation in physical activity.
Credit Hours: 0.25
Format: Laboratory/8-Week
Prerequisites: None
Projected Offering: Fall and Spring

4214 LIFETIME SPORTS II: GOLF
Golf is an introductory level course designed to foster the development of fundamental skills in golf and to support cadet commitment to lifelong participation in physical activity.
Credit Hours: 0.25
Format: Laboratory/8-Week
Prerequisites: None
Projected Offering: Fall and Spring

4222 PROFESSIONAL RESCUEER
The Professional Rescuer course is designed to provide each cadet with the knowledge and skills to
effectively respond to emergency situations in both aquatic and land-based settings. Practical scenarios will be utilized to elicit problem solving and application of rescue principles. Successful completion of this course will lead to selected certification.
Credit Hours: 2.00
Format: Class/Laboratory/16 weeks
Prerequisites: 4111
Projected Offering: Fall and Spring

4303 PERSONAL DEFENSE II: MARITIME LAW ENFORCEMENT TECHNIQUES
Personal Defense II exposes cadets to maritime law enforcement techniques. Upon completion of the course, cadets will be able to execute fundamental defensive techniques and prisoner control methods used by the U.S. Coast Guard.
Credit Hours: 0.25
Format: Laboratory/8-Week
Prerequisites: 4103
Projected Offering: Fall and Spring

4304 LIFETIME SPORTS III: TENNIS
Tennis is an introductory level course designed to foster the development of fundamental tennis skills and to support cadet commitment to lifelong participation in physical activity.
Credit Hours: 0.25
Format: Laboratory/8-Week
Prerequisites: None
Projected Offering: Fall and Spring

4400 REMEDIAL PHYSICAL TRAINING
Remedial Physical Training is designed to provide cadets who score below their class standard on the PFE with supplemental information and training in physical fitness.
Credit Hours: 0.00
Format: Laboratory
Prerequisites: None
Projected Offering: Fall and Spring

4405 ADVENTURE SPORTS I: ROCK CLIMBING
This course provides instruction in basic belaying, rappelling and climbing techniques. Climbing safety is a major focus. Fee required.
Credit Hours: 0.50
Format: Laboratory
Prerequisites: None
Projected Offering: Fall

4407 DANCE
This course provides instruction in different forms of dance. Offerings include ballet, jazz, modern, tap and hip hop. This course is conducted off campus. Fee required.
Credit Hours: 0.50
Format: Laboratory
Prerequisites: None
Projected Offering: Fall and Spring

4411 SCUBA DIVING
This course provides instruction in basic scuba diving safety and techniques and includes open water dive experience. N.A.U.I. certification is possible with successful completion of the course. Fee required.
Credit Hours: 0.50
Format: Laboratory/16 weeks
Prerequisites: 4111 and 4222
Projected Offering: Fall and Spring
4414 ADVANCED GOLF
This course provides advanced instruction in golf and offers cadets the opportunity to play on local courses. This course is conducted at local golf courses. Fee required for golf course play.
Credit Hours: 0.25
Format: Laboratory/8 weeks
Prerequisites: 4214
Projected Offering: Fall and Spring

4415 ADVENTURE SPORTS II
This course provides instruction in outdoor recreational sports such as orienteering, mountain biking, hiking and boating (canoe/kayak). Some elements of this course are conducted off campus. Fees may be required.
Credit Hours: 0.50
Format: Laboratory/16 weeks
Prerequisites: None
Projected Offering: Spring

4439 THEORY OF COACHING
This course provides instruction in the theory and techniques of coaching as well as opportunities for discussion on issues in contemporary athletics.
Credit Hours: 1.00
Format: Class/Laboratory/16 weeks
Prerequisites: None
Projected Offering: Fall and Spring

4444 INDOOR RECREATIONAL SPORTS
This course will provide instruction in popular recreational activities such as badminton, pickle ball and bowling.
Credit Hours: 0.50
Format: Laboratory/16 weeks
Prerequisites: None
Projected Offering: Fall and Spring

4459 SPORT/WELLNESS LEADER
This course provides an opportunity for cadets to acquire and utilize teaching and leadership skills in a physical activity setting. Cadets may choose to assist with instruction in a physical education class or provide guidance to cadets in the Remedial Physical Training program.
Credit Hours: 0.50
Format: Class/Laboratory/16 weeks
Prerequisites: None
Projected Offering: Fall and Spring

4464 STRENGTH AND CONDITIONING
This course provides instruction in the various theories and principles of strength and conditioning and follows the guidelines of the National Strength and Conditioning Association.
Credit Hours: 0.50
Format: Class/Laboratory/16 weeks
Prerequisites: 4102 and 4112
Projected Offering: Spring

4489 SELECTED TOPICS IN HEALTH AND PHYSICAL EDUCATION
This course will explore topics in wellness and physical activity that extend skills and concepts presented in the Health and Physical Education program. Topics will vary based on instructor and student interest.
Credit Hours: 0.5 – 2.0
Format: Dependent on topic
Prerequisites: Permission of the Department Head
Projected Offering: Fall and Spring

5102 CHEMISTRY I
Chemistry I is the first half of a one-year curriculum in general chemistry. The course presents an introduction to elementary concepts of chemistry, covering topics of matter and measurement, atomic theory and inorganic nomenclature, mass relationships, reactions in aqueous solution, gas laws and reactions, enthalpy, quantum theory, periodic trends in the elements, chemical bonding, and intermolecular forces. Comprehensive laboratory program.
Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: None
Projected Offering: Fall

5162 PHYSICS I
Basic concepts of Newtonian mechanics, particle kinematics and dynamics, rotational kinematics and dynamics, conservation laws, oscillations, fluids, and wave motion.
Credit Hours: 4.00
Format: Combined Class and Laboratory
Prerequisites: None
Corequisite: 3111
Projected Offering: Spring

5206 CHEMISTRY II
Chemistry II is the second half of a one-year curriculum in general chemistry. The course presents an introduction to elementary concepts of chemistry, covering the following topics: physical properties of gases, physical properties of solutions, chemical kinetics, chemical equilibrium, acids and bases, nuclear chemistry, organic chemistry, and biochemistry.
Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: 5102
Projected Offering: Spring

5208 CHEMISTRY II (HONORS – ENVIRONMENTAL APPLICATIONS)
The follow on course to Chemistry I. Coverage of required General Chemistry topics usually concludes around Spring Break so that the remainder of the semester can be dedicated to special topics chosen by the instructor. Taught as a single class and lab section with a great deal of student/instructor interaction and a continued emphasis on critical thinking skills. Intended for students with a strong chemistry background, an interest in environmental science or engineering, and particularly ideal for Marine and Environmental Sciences and Engineering majors.
Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: 5102 and Chemistry Section Chief approval
Projected Offering: Spring

5232 MARINE BIOLOGY
Consideration of the marine biosphere, marine life, and habitats with emphasis on interaction in food chains and human impacts. Review of plant and animal kingdoms in terms of the adaptations and ecological adjustments for marine habitats with detailed laboratory examination of specific forms.
Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: Instructor’s approval for non-majors
Projected Offering: Fall

5234 MARINE GEOCHEMISTRY
Introduction to the concepts of physical geology with emphasis on the marine realm. Topics include chemical exchanges at hydrothermal vents, global geochemical cycles of carbon, and the distribution of
organic matter, nutrients, contaminants and metals in the environment. Labs/field trips focus on map interpretation, analytical techniques, and field surveying techniques.
Credit Hours: 3.50
Format: Class/Laboratory
Prerequisites: 5206, Instructor’s approval for non-majors
Projected Offering: Spring

5238 PHYSICAL OCEANOGRAPHY
Introduction to descriptive and dynamical physical oceanography. The distribution and variability of seawater properties. Characteristics of the world’s major ocean currents and the forces affecting them. Underwater acoustics, waves, tides, and Coast Guard oceanography. Labs emphasize collection and analysis of oceanographic data.
Credit Hours: 3.50
Format: Class/Laboratory
Prerequisites: 5240, 5162
Projected Offering: Spring

5240 METEOROLOGY
Study of synoptic meteorology and climatology, with an introduction to atmospheric fluid dynamics. Atmospheric structure and radiative balances form the basis for understanding precipitation processes and stability. The effects of pressure and the earth’s rotation on winds at local, synoptic, and planetary scales are considered, along with severe weather phenomena, local, and regional climatology. Mid-latitude storm development is emphasized, including upper-air influences and vorticity. Laboratory work emphasizes weather data collection, regional forecasting using local observations and National Weather Service products, and Coast Guard applications at sea.
Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: Instructor’s approval for non-majors
Corequisite: 5162
Projected Offering: Fall

5247 PROJECTS IN MARINE SCIENCE
Start-up, completion, or involvement in ongoing research projects as an assistant in data collection or analysis. Final project is required.
Credit Hours: 1.00
Format: Directed Studies
Prerequisites: Approval of Project Advisor and Marine Science Section Chief
Projected Offering: Fall and Spring

5257 PROJECTS IN PHYSICS
Start-up, completion, or involvement in ongoing research projects as an assistant in data collection or analysis. Final project is required.
Credit Hours: 1.00
Format: Directed Studies
Prerequisites: Approval of Project Advisor and Physics Section Chief
Projected Offering: Fall and Spring

5266 PHYSICS II
A study of basic concepts of electromagnetism is presented, including the study of electrostatics, magnetostatics, circuit theory, motions of particles in fields, electromagnetic waves, Faraday’s law, and Ampere’s law.
Credit Hours: 4.00
Format: Combined Class and Laboratory
Prerequisites: 3111 and 5162
Projected Offering: Fall
5302 ORGANIC CHEMISTRY I
Chemical reactivity of organic compounds from a functional group perspective. Hydrocarbons, alkyl halides, aromatics, alcohols, ethers, carbonyl compounds, and amines. Laboratory introduction to important techniques of organic chemistry; the preparation of simple compounds; and analysis using mass spectrometry, nuclear magnetic resonance, infrared spectroscopy, and computer modeling.
Credit Hours: 4.00
Format: Class/Laboratory/Project
Prerequisites: 5206
Projected Offering: Fall

5312 ANALYTICAL METHODS IN CHEMISTRY
The course focuses on the theory, technology, design, function, and application of modern analytical instrumentation including liquid and gas chromatography separations and emission, absorption, mass, and nuclear magnetic resonance spectroscopies for detection and identification of organic and inorganic chemicals in air, water, soil, or biological samples. Cadets will develop scientific research and communications skills during the course that will be applied to conduct an end-of-semester original experiment with a research team. Experiments emphasize current Coast Guard and Homeland Security applications in environmental and forensic science.
Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: 5206
Projected Offering: Spring

5330 GEOSPATIAL SCIENCES I
This course introduces students in the Marine and Environmental Sciences major to the fundamental concepts of geospatial sciences, including modeling the real world within a Geographic Information Systems (GIS), coordinate systems (including datum and projections), sources of spatial data, entering and editing the data within a GIS, GIS spatial data analysis techniques, and cartography. Relevancy of geospatial technologies to the Coast Guard will be demonstrated throughout the course through the use of several Case Studies. The lab portion of the course will emphasize hands-on applications of principles discussed in lecture. Students will be expected to apply GIS principles learned in lecture and lab portions of course in order to complete an end-of-semester GIS project.
Credit Hours: 3.50
Format: Class/Laboratory
Prerequisites: Instructor’s approval for non-majors
Projected Offering: Fall

5334 FISHERIES BIOLOGY
This course addresses Ichthyology and some aspects of Fisheries Techniques. Emphasis is placed on fish classification, fish internal and external anatomy, morphology, adaptive characteristics of fishes to their habitats, and human causes of aquatic biodiversity decline. Identification of important commercial and recreational species will be learned throughout the course and with the use of keys. Indoor, outdoor labs and a field trip are designed to provide hands-on familiarity with fishes and fisheries techniques. This course requires writing of a scientific paper based on the collection and analysis of students’ data and a Hewitt paper and oral presentation.
Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: 5232 or Instructor’s approval for non-majors
Projected Offering: Fall

5338 MARINE FORECASTING
An advanced meteorology course with an emphasis on forecasting, especially at sea. After reviewing concepts from 5240, students will learn advanced concepts, skills, and techniques in marine forecasting; and master them during weekly weather briefs. Regional studies will include the Gulf of Alaska; West, East, and Gulf Coasts of the Continental U.S.; and the Caribbean Sea. Advanced concepts will include
wave development, hurricanes, nor’easters, and use of National Weather Service facsimile charts at sea.
Credit Hours: 3.00
Format: Class
Prerequisites: 5240 or Instructor’s approval
Projected Offering: As Required

5342 BIOLOGICAL AND CHEMICAL OCEANOGRAPHY
An ecological approach to life in the seas, with particular emphasis on energy flow through the food chain as shown by productivity of both producers and consumers. Discussion of the effects of natural vs. human-induced changes in marine ecosystems. Discussion of the data needed for mathematical modeling of specific ecosystems. Labs focus on up-to-date techniques for measuring seawater constituents relevant to the course; the last month of lab is devoted to a project/experiment designed and carried out by the student using techniques learned earlier in the semester.
Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: 5206 and 5232, or Instructor’s approval for non-majors
Projected Offering: Spring

5350 OCEAN DYNAMICS
This course emphasizes the mathematical description of the ocean’s response to the various forces that affect its motion. Emphasis is placed on the assumptions and approximations used in developing these mathematical descriptions, and on the physical understanding of the fluid characteristics represented by the equations. The basic concepts of fluid dynamics are first presented with an emphasis on total acceleration and continuity of volume. The equations of motion for fluids on a rotating earth are derived, and effects of turbulent motion are introduced. Steady-state solutions to the equations of motion, including Ekman dynamics, are examined. The geostrophic approximation, its consequences, and applications are discussed in detail. Theory is related to the real world through discussion of oceanic observations documented in the literature. Labs provide students the opportunity to investigate the properties and behavior of rotating fluids and to apply the equations of motion to real-world flows modeled in rotating fluid tanks.
Credit Hours: 3.50
Format: Class/Laboratory
Prerequisites: 3211, 5238, 5240, and 5162
Projected Offering: Fall

5352 WAVES AND TIDES
Waves and Tides, which follows Ocean Dynamics (5350), is the second course in the Physical Oceanography course sequence. While Ocean Dynamics (5350) focuses entirely on time-independent (i.e. steady-state) flow, this course covers the time-dependent phenomena of linear ocean waves. Beginning with a mathematical treatment of surface gravity waves, the course includes discussion of ocean waves on a variety of temporal and spatial scales, from centimeter-scale gravity-capillary waves to planetary-scale Rossby waves and fundamental theories of tides. The effect of Earth’s rotation is considered for large-scale waves. In the laboratory portion of the course, students learn to apply concepts and data analysis methods presented in lecture to real wave data using MATLAB, a versatile mathematical modeling software program.
Credit Hours: 3.50
Format: Class/Laboratory
Prerequisites: 3215, 5238, 5240, 5162, and 5350
Projected Offering: Spring

5366 ASTRONOMY
Historical and modern topics in astronomy are presented including the Solar System, stellar structure and evolution, galaxies, and cosmology. Includes night observations at the astronomical observatory and physical astronomical measurements.
Credit Hours: 3.00
Format: Class
Prerequisites: 5266, 5206
Projected Offering: Fall – Odd

5379 DIRECTED STUDIES IN MARINE SCIENCE
Individual program of advanced readings or laboratory projects in marine science.
Credit Hours: 3.00
Format: Directed Studies
Prerequisites: Instructor’s approval
Projected Offering: Fall and Spring

5389 DIRECTED STUDIES IN PHYSICS
Individual program of advanced readings or laboratory projects in physics.
Credit Hours: 3.00
Format: Directed Studies
Prerequisites: 5266 and Instructor’s approval
Projected Offering: Fall and Spring

5399 DIRECTED STUDIES IN CHEMISTRY
Individual program of advanced readings or laboratory projects in chemistry.
Credit Hours: 3.00
Format: Directed Studies
Prerequisites: 5206 and Instructor’s approval
Projected Offering: Fall and Spring

5406 PHYSICAL CHEMISTRY
Study of the states of matter and their properties, including ideal and real gases, kinetic theory, laws of
thermodynamics, phase equilibria, chemical equilibrium, electrochemistry, chemical kinetics, atomic
structure, the chemical bond, cohesion and structure, and molecular spectroscopy.
Credit Hours: 3.50
Format: Class/Laboratory
Prerequisites: 5206 and 5266
Projected Offering: Fall

5415 FATE AND TRANSPORT OF CHEMICALS IN THE ENVIRONMENT
An investigation of investigates the behavior of organic chemicals when they are released to the multimedia
environment of air, water, soil, dissolved organic matter and biota. Quantitative multimedia distribution
models based on fundamental chemical and physical properties are developed. Estimates of environmental
effects are determined from the distribution models. A comprehensive final project requires that students
behave as professional military scientists to solve a risk assessment problem.
Credit Hours: 3.00
Format: Class
Prerequisites: Instructor’s approval for non-majors
Projected Offering: Fall

5417 TOXICOLOGY
Survey of the most important concepts in Toxicology. Effects of xenobiotic substances on the most
important physiological systems will be covered with examples relevant to Homeland Security such as
chemical warfare agents and industrial products. Exposure assessment, aerosol bio-dynamics, and dose
response concepts will also be covered. Subject matter will include review of physiology as it pertains to
effects of xenobiotics on the body.
Credit Hours: 3.00
Format: Lecture
Prerequisites: 5206 or equivalent
Projected Offering: Spring
5419 BIOCHEMISTRY
A survey of the principles of biochemistry and molecular biology, including the structure and function of molecules important for life, such as amino acids, sugars, nucleic acids, lipids, and carbohydrates. Topics will include concepts of catabolism and metabolism, biological macromolecule structure/function relationships, DNA structure and replication, and protein synthesis. An overview of laboratory techniques important in modern biochemistry will also be covered including computational biology.
Credit Hours: 3.00
Format: Lecture
Prerequisites: None
Projected Offering: Fall – Odd Year

5420 CHEMOMETRICS
A workshop-style course focused on the theory and application of multivariate and multi-way pattern recognition, curve resolution, classification, and regression. Linear algebra concepts necessary for discussion of these topics will be covered. The theory of methods including Principal Components Analysis, Parallel Factor Analysis, and Partial Least Squares regression will be covered and applied by students to instrumental and survey data sets including images.
Credit Hours: 1.00
Format: Lecture
Prerequisites: None
Projected Offering: Fall – Even Year

5421 PROJECTS IN CHEMISTRY
Start-up, completion, or involvement in ongoing research projects as an assistant in data collection or analysis. Final project is required.
Credit Hours: 1.00
Format: Directed Studies
Prerequisites: Approval of Project Advisor and Chemistry Section Chief
Projected Offering: Fall and Spring

5429 RESEARCH IN CHEMISTRY
Individual or team laboratory projects in chemistry. Final project report and presentation at Cadet Research Symposium are required.
Credit Hours: 3.00
Format: Directed Studies
Prerequisites: Approval of Research Advisor and Chemistry Section Chief
Projected Offering: Fall and Spring

5430 GEOSPATIAL SCIENCES II
This course examines advanced topics in geospatial sciences, including the physics and technology of remote sensing theory and advanced GIS analytical techniques. The principles of physical radiation, which form the foundation for remotely measuring surface processes, are first discussed in detail. Advanced GIS analytical techniques such as spatial, geostatistical, three-dimensional, and network analysis are then discussed. Hands-on activities allow for further application and exploration of these techniques. The lab portion of the course will emphasize hands-on applications of principles discussed in lecture. Students will be expected to apply GIS principles learned in lecture and lab portions of course in order to complete an end-of-semester GIS project.
Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: 5330 or 5475
Projected Offering: Spring

5436 COASTAL OCEANOGRAPHY
The physical oceanography of the coastal zone is studied, as well as the dynamics of tidal flows in estuaries. Estuarine circulation and mixing at tidal and non-tidal time scales. The advection/diffusion
relationships, and their application to the dispersal and monitoring of pollutants. Beach processes and interactions between estuaries and the coastal ocean. Labs emphasize student proposed and conducted research in the Thames River estuary. The results are presented at a symposium at the close of the semester.

Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: 3211, 5238, 5162, and 5350
Projected Offering: Fall

5440 MICROBIOLOGY
A survey of the microbiology and the applications of microbiology to human health. Topics include cell structure and function, metabolism, growth, genetics, and classification of prokaryotes, fungi, and viruses. Special attention will be paid to microbiological agents that are potential weapons of mass destruction, such as Bacillus anthracis (anthrax), Yersinia pestis (plague), Francisella tularensis (tularemia), and Variola major (smallpox). The mechanisms of human immunological Defense will also be covered.

Credit Hours: 3.00
Format: Class
Prerequisites: None
Projected Offering: Fall - Even

5441 PETROLEUM AND OIL SPILL SCIENCE
A broad and thorough study of the petroleum production technology and also oil spill science. Topics will include petroleum exploration, production and shipping systems. The composition of crude oil and petroleum products will be studied as will a basic description of measurement techniques for studying crude oil, distilled petroleum products, and oil found in the environment including oil spill fingerprinting techniques. The sources, fate and transport of petroleum pollution will be studied in depth, including modeling techniques used by modern pollution responders. Oil spill clean-up technology will be described, and nationally prominent guest speakers will describe the current state of oil spill response and science.

Credit Hours: 3.00
Format: Class
Prerequisites: 5206
Projected Offering: Spring

5443 MARINE ECOLOGY
As the capstone course in the Biological-Environmental track of the Marine and Environmental Science major, this course builds upon principles explored in previous courses. Specifically, it examines ways in which biological communities interact with their physical environment to produce observed patterns in the abundance and distribution of organisms in the world’s oceans. Students undertake an in-depth study of important biological interactions in nature, such as competition, predation, and mutualism, and their roles in population growth, ecological succession, and patterns in biological diversity. Attention is paid to the role of natural and anthropogenic sources of disturbance in marine ecosystems. Course projects include dynamic computer modeling to evaluate the role of resource management tools in marine conservation.

Credit Hours: 3.00
Format: Class
Prerequisites: 5232 and 5334
Projected Offering: Fall

5444 ATMOSPHERIC AND MARINE SCIENCES
Description: TBD
Credit Hours: 1.50
Format:
Prerequisites:
Projected Offering: Fall and Spring

5445 FISHERIES MANAGEMENT
This is a capstone course, which examines issues associated with the management and conservation of
fisheries. The interaction between social, biological, economic, and political aspects of fisheries management is the focus of this course. The course is a combination of lectures, discussion, student presentations, and guest speakers. Guest speakers are invited from a variety of backgrounds including Coast Guard officers, National Marine Fisheries Service scientists, fisheries scientists, fisheries managers, and commercial fishermen, to expose students to various perspectives on fishing issues.

Credit Hours: 3.00
Format: Class
Prerequisites: Instructor’s approval for non-majors
Projected Offering: Spring

5447 POLAR OCEANOGRAPHY
Polar Oceanography is a three-credit elective course in the Marine and Environmental Sciences major that focuses on the physical processes in the Arctic and Antarctic regions. The concepts of polar climate, meteorology, and physical oceanography are discussed in order to establish a basic level of knowledge required to study the recent changes in polar dynamics. Emphasis is placed on the Arctic region and its expanding Coast Guard missions, including search and rescue, oil spill response, and ice breaking. Sea ice formation and dynamics and the remote sensing of Arctic sea ice are discussed in detail.

Credit Hours: 3.00
Format: Class
Prerequisites: 5238 or instructor approval
Projected Offering: Spring

5449 RESEARCH IN PHYSICS
Individual or team laboratory projects in physics. Final project report and presentation at Cadet Research Symposium are required.

Credit Hours: 3.00
Format: Directed Studies
Prerequisites: Faculty Research Advisor and Physics Section Chief approval
Projected Offering: Fall and Spring

5459 RESEARCH IN MARINE SCIENCE
Individual or team laboratory projects in marine science. Final project report and presentation at Cadet Research Symposium are required.

Credit Hours: 3.00
Format: Directed Studies
Prerequisites: Faculty Research Advisor and Marine Science Section Chief approval
Projected Offering: Fall and Spring

5469 RESEARCH IN GEOSPATIAL SCIENCES
Individual or team laboratory projects in geospatial sciences. Final project report and presentation at Cadet Research Symposium are required.

Credit Hours: 3.00
Format: Directed Studies
Prerequisites: Faculty Research Advisor and Marine Science Section Chief approval
Projected Offering: Fall and Spring

5475 INTRODUCTION TO GEOSPATIAL SCIENCES
This course introduces students not in the Marine and Environmental Sciences major to the fundamental concepts of geospatial sciences, including modeling the real world within a Geographic Information Systems (GIS), coordinate systems (including datum and projections), sources of spatial data, entering and editing the data within a GIS, GIS spatial data analysis techniques, and cartography. Relevancy of geospatial technologies to the Coast Guard will be demonstrated throughout the course through the use of several Case Studies. Students will be expected to apply GIS principles learned in lecture and lab portions of course in order to complete an end-of-semester GIS project. Students in the Marine and Environmental Sciences major cannot take this course in lieu of 5330, Geospatial Sciences I.
5477 OPTICS
An introductory course in optics designed to provide a working knowledge of electromagnetic theory. The fundamental principles of geometrical (e.g., reflection, refraction) and physical optics (interference, polarization, diffraction) are introduced. The emphasis of the course is on understanding the basic physical principles underlying practical photonic devices through the use of hands-on, in-class activities.
Credit Hours: 3.00
Format: Class/Laboratory
Prerequisites: None
Projected Offering: Spring, as required

5493 ETHICS
Description: TBD
Credit Hours: 1.00
Format:
Prerequisites:
Projected Offering: Spring

5495 SELECTED TOPICS IN PHYSICS
Description: TBD
Credit Hours: 3.00
Format:
Prerequisites:
Projected Offering: Fall and Spring

5498 SELECTED TOPICS IN MARINE SCIENCE
Description: TBD
Credit Hours: 3.00
Format:
Prerequisites:
Projected Offering: Fall and Spring

6101 FUNDAMENTALS OF NAVIGATION
Fundamentals of Navigation is an exploration of the basic principles of earth’s characteristics and terrestrial navigation for which a Deck Watch Officer or entry level officer will be responsible. In the earth’s characteristics module, the emphasis is on earth’s coordinate system, magnetism of the earth, chart projections, chart preparation, and various distance, speed, and time relationships. The terrestrial navigation module focuses on positioning techniques, compass computation, calculation of tides and currents, tactical characteristics, coastal and transoceanic voyage planning, and aids to navigation. The celestial navigation module focuses on time of phenomena, coordinate systems, celestial and navigational triangles, gyrocompass error by azimuth and amplitude, and solving for latitude by observations of local apparent noon and Polaris. This course is required to prepare cadets for experiential learning afloat as a navigation team member during the common portion of the 3/c summer training program. A short research project covering selected navigational topics integrates course material and primary source research that the students submit in a written form.
Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: None
Projected Offering: Fall and Spring

6201 SHIPS AND MARITIME SYSTEMS
Provides fundamental technical knowledge of ships and maritime systems. A baseline understanding is
developed to support future assessment of impact, benefit, and risk of decisions involving design, acquisition, operation, regulation, law enforcement, damage control, maintenance, and salvage of ships and maritime systems. Specific subject areas include international/domestic rules and regulations, intact and damage stability, marine structures, ship propulsion, primary and auxiliary ship systems, marine salvage, ship motions, ship handling, and offshore structures.

Credit Hours: 3.00
Format: Class/Laboratory
Prerequisites: 6101 and 3/c Summer Training Program
Corequisite: 5206, 5162
Projected Offering: Fall and Spring

6202 APPLICATIONS IN NAVIGATION LAB
Applications of Navigation is a lab based course that meets three times per week. This course continues the developmental journey by building upon the fundamental navigation preparation of 6101 and the common experience of 3/c summer. The goal is to build proficiency in relative motion fundamentals, navigation evaluation, and voyage planning. The first module introduces cadets to the basics of relative motion theory with the initial exploration of maneuvering boards for course, speed, closest point of approach, avoidance and intercepts, secondary effects, true wind and desired apparent wind. The second module improves the navigation team skills learned in 6101 and the proficiency required to navigate a ship through restricted, coastal and open ocean environments. The third module focuses on voyage planning through the research of applicable publications prior to transiting through an unfamiliar port. The introduction to the navigation brief as a tool for risk mitigation is discussed. This course is a prerequisite for the 2/c Summer Training Program.

Credit Hours: 1.00
Format: Laboratory
Prerequisites: 6101
Projected Offering: Fall and Spring

6210 PRIVATE PILOT GROUND SCHOOL
The Private Pilot Ground School course covers the material needed to successfully pass the FAA Private Pilot Knowledge Test. Completion of the course qualifies the student to take that FAA Private Pilot Knowledge Test which is one of the requirements for a private Pilot License. The subjects covered include aerodynamics, aircraft systems, flight instruments, weight and balance, aircraft performance, weather, airspace, navigation, aeromedical factors, and FAA and NTSB regulations.

Credit Hours: 3.00
Format: Class
Prerequisites: None
Projected Offering: Fall and Spring

6301 THE MARITIME WATCH OFFICER
The Maritime Watch Officer course focuses on the knowledge and skills vital to successful performance as a Maritime Watch Officer. This course builds upon individual navigation proficiency gained during the prerequisite courses and summer training programs and introduces new watch team skills applicable to maritime watches. In addition to refreshing navigation team skills taught in Nautical Science I and II, students will develop new skills such as: advanced navigation coordination, advanced relative motion theory and practice coupled with collision avoidance and briefing the command, electronic navigation theory and practice, basic, routine and emergency shiphandling procedures and practice, external communications, and Bridge Resource Management knowledge, skills and techniques. Classroom theoretical discussions are reinforced and applied in the various visual and radar simulators and CGA training vessels within a watch team construct. Risk based decision making concepts are further analyzed in group projects wherein cadets present the causal factors and potential corrective actions surrounding selected Coast Guard Cutter mishaps.

Credit Hours: 4.00
Format: Class/Laboratory
Prerequisites: 6101, 6201, 6202
Projected Offering: Fall and Spring

6310 MARINE SAFETY PROFESSIONAL
This course provides a detailed overview of Coast Guard Marine Safety missions that are executed at Sectors through marine inspectors, waterways management, and casualty investigations. Cadets will learn about the Coast Guard’s roles and authorities for ensuring the safety and security of federal waterways and improve their critical thinking about real-world maritime challenges that exist in the Marine Transportation System. Specifically, this course will help cadets appreciate the importance of the Coast Guard’s role in international maritime trade and facilitating commerce throughout the United States. Emphasis is placed on the knowledge and skill sets, e.g., risk management, decision making, etc., required for junior officers and provides cadets direct exposure to career opportunities in the Marine Safety program.
Credit Hours: 3.00
Format: Class
Prerequisites: 6201
Projected Offering: Spring

6401 SELECTED TOPICS FOR THE 100 TON MASTER
This capstone course integrates previous nautical science topics in Professional Maritime Studies to prepare cadets to pass the National Maritime Center approved Master – 100 gross tons near coastal licensing examination. This course will focus on four major areas of study from 46 CFR 11.910, which governs the required subjects of instruction for deck officer endorsements. The four areas of study are Deck – Safety, Deck – General, Navigation – General and Navigation Problems – Chart Plot. Additionally, lab assignments in the bridge simulators and aboard 65-foot training vessels will develop critical thinking and decision-making skills in navigation and shiphandling while also reinforcing Bridge Resource Management concepts through effective leadership and communication. Upon completion of this course and successfully passing the final examination, cadets will be eligible to apply for a Master – 100 gross tons near coastal license.
Credit Hours: 3.00
Format: Class
Prerequisites: 6101, 6201, 6202, 6301
Projected Offering: Fall and Spring

6402 SELECTED TOPICS FOR THE 100 TON MASTER LABORATORY
Description: TBD
Credit Hours: 1.00
Format:
Prerequisites:
Projected Offering: Fall and Spring

6459 SELECTED TOPICS IN PROFESSIONAL MARITIME STUDIES
In depth examination of a terrestrial, celestial, or electronic navigation topic or a stability, damage control, shiphandling, shipboard leadership framework or ship related training system topic. Specific course content will vary based upon emerging and relevant navigation, training, or leadership issues, institutional and organizational needs, and students’ interests. Includes additional reading, writing, research, and/or casework.
Credit Hours: 1.00
Format:
Prerequisites: 6101
Projected Offering: Fall and Spring

6469 PROJECTS IN PROFESSIONAL MARITIME STUDIES
Start-up, involvement, or completion in a project involving data collection, synthesis and/or analysis. Specific course content will vary based upon emerging and relevant navigation, training, leadership, institutional or organizational topics. A final project is required.
Credit Hours: 1.00
6489 **DIRECTED STUDIES IN PROFESSIONAL MARITIME STUDIES**
Advanced tutorial concentrating on specific topics in the area of cutter, sector or aviation operations. Cadets will develop a proposal for a research paper or project, which must be completed by the end of the semester under the guidance of a Professional Maritime Studies faculty member. Limited to advanced students who have completed course work and shown significant interest in Professional Maritime Studies.
Credit Hours: 3.00
Format: Directed Studies
Prerequisites: 6101, 6201, 6202, 6301
Projected Offering: Fall and Spring

8115 **MACROECONOMIC PRINCIPLES**
Examination of basic concepts, methodology and problems of macroeconomic measurement and aggregate economic activity, money, banking, international trade and finance. Macroeconomic policy for economic stability and growth.
Credit Hours: 3.00
Format: Class
Prerequisites: None
Projected Offering: Fall and Spring

8201 **INTRODUCTION TO MANAGEMENT AND BUSINESS**
Provides an overview of the history and development of management and business including the areas of planning, organizing and control. Provides an introduction to the functional areas of business as well as an introduction to the Management major.
Credit Hours: 3.00
Format: Class/Project
Prerequisites: None
Restriction: Management majors only
Projected Offering: Fall and Spring (Spring is only for late entrants into major)

8211 **ORGANIZATIONAL BEHAVIOR AND LEADERSHIP**
Using leadership as its focus, this course examines the relationship of individual and group behavior in organizations to organizational effectiveness. Uses case studies, classroom exercises, lecture, and discussion to develop an understanding of motivation, group/team effectiveness, communications, and performance management with particular attention to the practical leadership implications of current theory.
Credit Hours: 3.00
Format: Class/Group Work/Project
Prerequisites: None
Projected Offering: Fall, Spring and Summer

8217 **MICROECONOMIC PRINCIPLES**
Credit Hours: 3.00
Format: Class
Prerequisites: None
Projected Offering: Fall

8241 **LEGAL ENVIRONMENT OF BUSINESS**
This course introduces you to the fundamental principles of business law and will address legal issues that impact managerial decision making in the public, private and non-profit sectors. You will explore the
interplay of those legal principles with operations, government regulations, and the ethical and social responsibilities inherent in business decision-making. Topics include: sources of law, business ethics, commercial transactions, torts, intellectual property, business entities, employment law and environmental law.
Credit Hours: 3.00
Format: Class
Prerequisites: None
Projected Offering: Spring

8246 PRINCIPLES OF FINANCIAL ACCOUNTING
Accounting process as a system for communicating financial information to internal and external users in both profit-based and non-profit setting. Fundamental financial accounting concepts related to the balance sheet, income statement, and statement of cash flows. Introduction to government and not-for-profit accounting and application of basic cost accounting concepts. Focus on the decision-usefulness of accounting information from the perspective of the user. Extensive analytical problem-solving, both structured and unstructured.
Credit Hours: 3.00
Format: Class
Prerequisites: None
Projected Offering: Spring

8313 ESSENTIALS OF ECONOMICS FOR ENGINEERING MAJORS
This course is an accelerated introduction in both Microeconomics and Macroeconomics. It covers the essentials of material otherwise taught in less than a single semester. The section on Microeconomics focuses on studying the behavior of individual economic agents, including consumers and firms, in a market system. This includes learning about supply and demand, taxes, government influences on markets, externalities, and production and cost, along with a summary of output and pricing decisions in different market settings like perfect competition and monopoly. The section on Macroeconomics focuses on an analysis of the behavior of the national economy as a whole, together with such issues as the determination of gross domestic product, the unemployment rate, the inflation rate, interest rates, and the long-term economic growth rate. This is a fast-paced course designed for students whose preparation in the requisite quantitative skills is above average. At the end of the semester, students will have a solid understanding of modern microeconomics, markets, and the macro-economy.
Credit Hours: 2.00
Format: Class
Prerequisites: Engineering Majors
Projected Offering: Fall and Spring

8331 MANAGEMENT INFORMATION SYSTEMS
Prepares managers to function in a technological environment. The roles of information processing in managerial decision making. The structure of information systems; development; management computing technology, data processing, and information assurance. Applications within major functional subsystems of management. The class will also discuss the role of technology in today’s society, with an emphasis on the use by the Coast Guard and Homeland Security and the ethical issues raised by the misuse of technology. Laboratory work will focus on applications of the topics discussed in class. A research project on current technology topics is required.
Credit Hours: 3.30
Format: Class/Project/Laboratory
Prerequisites: None
Projected Offering: Fall

8342 MARKETING
Marketing concepts and their relationship to strategic management of private, public, and not-for-profit organizations. Marketing mix, market segmentation, product differentiation, demographics, and advertising, promotion, distribution. Marketing of services and marketing’s role in governmental
organizations.
Credit Hours: 3.00
Format: Class/Cases
Prerequisites: None
Projected Offering: Spring

8348 MANAGERIAL ACCOUNTING
The examination of cost information in decision making for both the short and long terms. Topics include the different costing systems, cost behavior and estimation, standard costing and variance analysis, along with flexible budgets and control of overhead costs. Extensive analytical problem solving, including the use of cases.
Credit Hours: 3.00
Format: Class
Prerequisites: 8246
Projected Offering: Fall

8349 FINANCIAL MANAGEMENT
Application of financial theory, tools and methods to managerial decision-making with a goal of value maximization through effective cash flow management. Focus is on the investment decision (asset risk, time-value of money, cost of capital, discounted cash flow analysis) and the financing decision (financial risk, use of leverage, capital structure). Some coverage of financial markets. Extensive analytical problem solving, including the use of cases.
Credit Hours: 3.00
Format: Class
Prerequisites: 3213, 8246 or permission of the instructor
Projected Offering: Spring

8351 RESEARCH METHODS
Examination of quantitative analysis techniques and concepts that builds upon the numeracy, measurement, and proportional reasoning learned in Computer-Based Problem Solving, and upon the descriptive statistics and basic probability theory learned in Probability and Statistics. Qualitative analysis techniques and concepts including survey methods are introduced. Students learn how to conceptualize an object and an attribute of it so that the attribute has a unit of measure, to interpret models to discover trends and make predictions, and to create representations to explain a phenomenon and revise them based on fit to reality. Case studies and a research project.
Credit Hours: 3.00
Format: Class
Prerequisites: 2142 or 1224, 3213
Projected Offering: Fall

8357 HUMAN RESOURCES MANAGEMENT
Examination of the fundamentals of Human Resource management theory as it pertains to supervisors and managers. Topic coverage includes recruitment, selection, performance evaluations, retention, training issues, and EEO guidelines. Emphasis on applications of the theory. Use of student presentations and term paper.
Credit Hours: 3.00
Format: Seminar/Cases/Project
Prerequisites: 8211
Projected Offering: Fall

8363 OPERATIONS AND PROJECT MANAGEMENT
The study of operations management and industrial applications: maintenance and production scheduling, project planning and management. Emphasis on problem solving, computer applications and case studies.
Credit Hours: 3.30
Format: Class/Cases/Lab
Prerequisites: 3213
Projected Offering: Spring

8366 LEADERSHIP, ORGANIZATIONAL DEVELOPMENT AND CHANGE
Examination of leadership issues in an organizational framework. Topics include a historical review of organizational management thought; leadership theories with organizational applications; organizational diagnosis and analysis; organizational culture, change, and improvement; and concepts that relate to leading public organizations (such as organizational vision, parallel systems, and quality concepts).
Credit Hours: 3.00
Format: Class/Seminar
Prerequisites: 8211
Projected Offering: Spring

8413 MANAGERIAL ECONOMICS
Analysis of microeconomic forces in managerial decision making. Topics include: consumer demand and indifference curves; production functions and cost theories; producer behavior in different market structures; pricing theories: multiproduct pricing, pricing to deter entry; and transfer pricing; vertical integration. Evaluation of alternative firm objectives, and the non-traditional firm. Cost-benefit analysis.
Credit Hours: 3.00
Format: Class
Prerequisites: 8217
Projected Offering: Spring

8415 PERSONAL FINANCE
A study of issues relevant to personal finance. Topics include budgets, insurance, taxes, markets, investments, retirement, and estate planning.
Credit Hours: 1.00
Format: Class
Prerequisites: None
Projected Offering: Fall and Spring

8417 INVESTMENT THEORY
This course is an introduction to the modern investment theory. Major topics include utility theory, mean-variance portfolio construction, the Capital Asset Pricing model (CAPM), Arbitrage Pricing Theory (APT), efficient market hypotheses, interest rate theories, valuation of financial assets and their derivatives, as well as investment analysis and asset allocation to meet investment objectives.
Credit Hours: 3.00
Format: Class
Prerequisites: 3213, 8217, 8349 or equivalent courses, or permission of the instructor
Projected Offering: Spring

8418 FUNDAMENTALS OF PERSONAL FINANCIAL PLANNING
This course seeks to develop a level of financial literacy necessary to avoid financial mistakes that can derail a career. Financial planning seeks to develop a level of financial literacy necessary to manage all aspects of an individual’s financial affairs, both immediate and long-term needs. Topics covered include career selection, budgeting, taxes, retirement planning, the use and management of credit, the management of risk (through the use of insurance and non-insurance means), and estate planning. Special attention is given to large purchases, such as automobiles and real estate.
Credit Hours: 3.00
Format: Class
Prerequisites: 8349
Projected Offering: Fall

8419 INFORMATION TECHNOLOGY IN ORGANIZATIONS
In-depth examination of fundamental technological and managerial issues relevant to information technology management in the U.S. Coast Guard. Topics of emphasis include: computer architecture,
network theory, and system administration, analytical processes in determining an organization’s information technology needs, and the Coast Guard’s IT plan. Structured to address state of the market and research developments in IT. A project with emphasis on real-world applicability is required.
Credit Hours: 3.00
Format: Class/Project/Laboratory
Prerequisites: 8331 or permission of the Instructor
Projected Offering: Fall

8423 MANAGEMENT CONTROL
Study of the management control function in public, private, and governmental organizations: planning, programming, budgeting, operating and measurement, reporting and evaluation. Managerial accounting issues related to cost analysis and its role in decision-making and control.
Credit Hours: 3.00
Format: Seminar/Class
Prerequisites: 8115, 8217
Corequisites: 8246
Projected Offering: On demand

8425 GLOBAL BUSINESS AND ECONOMIC ISSUES
Introduction to the concepts, framework and issues of global business: multinational firms; international trade; and the cultural, political, institutional, social, and economic environment of the global marketplace.
Credit Hours: 3.00
Format: Class
Prerequisites: None
Projected Offering: On Demand

8429 MANAGERIAL PSYCHOLOGY
A rigorous reading-intensive study of advanced behavioral science topics such as the MBTI, positivist psychology, transactional analysis, commitment, motivation, and emotional intelligence. Emphasis on theoretical understanding and application. Extensive student participation and class leadership.
NOTE: A significant reading assignment and entrance exam are required for admission to the course.
Credit Hours: 3.00
Format: Class/Seminar
Prerequisites: 8211
Projected Offering: Fall

8439 DIVERSITY AND LEADERSHIP
The course will examine diversity as a complex phenomenon and provide students with the understanding necessary to lead effectively in an increasingly diverse workplace. The course will demand serious, critical engagement in order to develop the awareness, knowledge, and skills necessary to create and lead inclusive, multicultural organizations.
Credit Hours: 3.00
Format: Seminar
Prerequisites: 8211
Projected Offering: Spring

8440 FEDERAL BUDGETING
This course covers selected topics in federal budgeting. Since this a broad subject, our focus is on governmental accounting and budgeting standards. Students are exposed to the basics of how the federal budget is formulated, resolved, and executed at the national level, in the Coast Guard, and at the Coast Guard field level. Government accounting methods, government accounting standards, economic and agency-specific policy are central to understanding budget analysis and formulation. Students will begin the semester learning about the process of how the federal budget is passed and identification of specific budget laws that define how we formulate and pass our nation’s budget. Students will also be required to demonstrate an understanding of breakeven analysis, applying different costing models, and revenue
forecasting models, as it pertains to federal budgeting. Near the end of the course, students are also exposed to the basics of appropriations law and procurement policies specific to the Coast Guard. Last, students will have an opportunity to prepare and pursue testing for parts of the Certified Government Financial Manager (CGFM) exams, which is backed by the Association of Government Accountants.

Credit Hours: 3.00
Format: Class
Prerequisites: 8246 and 8348
Projected Offering: Spring

8442 PUBLIC SECTOR ECONOMICS
Application of Economic logic to public sector issues; market failure and the economic rationale for government intervention; public choice and public goods; analysis of taxation and government expenditure policy; examination of selected taxes and expenditure classifications.

Credit Hours: 3.00
Format: Class
Prerequisites: 8115, 8217
Projected Offering: On demand

8443 STRATEGIC MANAGEMENT
Strategy and policy development in the private and public sectors. Emphasis on environmental analysis, strategic advantage profile, social responsibility, and ethics. The relationships of finance, personnel, marketing, and structure to policy decisions. Case studies/simulation.

Credit Hours: 3.00
Format: Class/Cases/Project
Prerequisites: 8115, 8217, 8246, 8349, and 8366
Restrictions: 1/c Management majors only
Projected Offering: Fall

8444 PUBLIC MANAGEMENT CONSULTING PREPARATION
The course is designed to add to and focus student skills needed to excel in the Public Management Consulting (PMC) capstone course of the Management degree program. Students learn professional consulting skills, how to apply the DMAIC framework, and effective, ethical and legal ways to use information to accomplish a specific purpose. Students demonstrate the ability to integrate current research into a literature review, to apply relevant data analysis methodologies, competent presentation skills, and competent project management skills. Deliverables include a letter of engagement, a literature review, and a work plan for completing a PMC capstone project in the spring semester.

Credit Hours: 3.00
Format: Class/Cases/Project
Prerequisites: 8115, 8217, 8246, 8349, and 8366
Restrictions: 1/c Management majors only
Projected Offering: Fall

8445 PUBLIC MANAGEMENT CONSULTING
The capstone course for the Management Major teaches the fundamentals of management consulting as part of a project-based experience. Students learn the basics of internal and career consulting. Topics include the consulting process; the ethics of consulting; and issues surrounding the use of consultants. Exploring the nature of consulting from the vantage points of both consultant and client, the course is designed for students who find themselves serving as an internal consultant, do occasional consulting, or need to hire or work with external consultants.

Credit Hours: 3.00
Format: Project/Seminar
Prerequisites: 8357, 8443, 8444
Restrictions: 1/c Management majors
Projected Offering: Spring
8446 INTERMEDIATE FINANCIAL ACCOUNTING
This course is a continuation of 8246, Principles of Financial Accounting. This course will delve more deeply into the technical aspects of accounting, stressing the role played by International Standards on US GAAP, as well as greater depth in the treatment of complex accounting issues, such as revenue recognition, stock and stock options, pensions, and related advanced topics. The focus will be on how various accounting policy choices affect the formal financial statements and how assumptions can radically change these reported outcomes.
Credit Hours: 3.00
Format: Class
Prerequisites: 8246
Projected Offering: Fall

8447 AUDITING AND INTERNAL CONTROL
This course is the capstone offering in the Financial Management concentration, placing its emphasis on the auditing activity and how internal controls can be used to reduce the operational risk of an organization. Students will increase their analytical skills in addition to gaining a more realistic understanding of the role of internal control in curbing undesirable or dysfunctional behavior in organizations and to safeguard the assets of the organization. The course will convey existing U.S. Audit Standards (GAS) as well as established audit and control procedures as detailed in the COSO Framework and the Sarbanes-Oxley (SOX) Acts.
Credit Hours: 3.00
Format: Project/Seminar
Prerequisites: 8246 and 8348
Projected Offering: Spring

8448 SELECTED TOPICS IN FINANCE, ACCOUNTING, AND ECONOMICS
In depth examination of advanced finance, accounting, or economics topics. Specific content of course will vary based upon emerging and relevant finance, accounting, and economics theory, institutional and organizational needs, and students interests. Includes extensive reading, writing, research, and/or casework.
Credit Hours: 3.00
Format: Class
Prerequisites: None
Restrictions: 1/c cadets
Projected Offering: Fall and Spring

8449 SELECTED TOPICS IN INFORMATION SYSTEMS AND DECISION SCIENCES
In depth examination of advanced information system or decision science topics. Specific content of course will vary based upon emerging and relevant information and decision science theory, institutional and organizational needs, and students interests. Includes extensive reading, writing, research, and/or casework.
Credit Hours: 3.00
Format: Class
Prerequisites: None
Restrictions: 1/c cadets
Projected Offering: On demand

8450 SELECTED TOPICS IN MANAGEMENT AND LEADERSHIP
In depth examination of advanced management and/or leadership topics. Specific course content will vary based on emerging management and leadership theory, institutional and organizational needs, and student desires. Potential topic areas include intrinsic vs. extrinsic motivation, commitment vs. compliance, transformational leadership, visionary leadership, responsibility and accountability, strategic leadership, establishing and communicating a vision, communication and decision-making. Includes extensive reading, research, case writing, and a comprehensive writing assignment.
Credit Hours: 3.00
Format: Class
Prerequisites: 8366
Restrictions: 1/c cadets
Projected Offering: On demand

8453 SYSTEMS ANALYSIS AND DESIGN
Examination of the concepts, tools, and development methodologies used in information systems analysis and design. Feasibility study, requirements analysis, design, and development documentation are covered. The system development life cycle, prototyping, data modeling, and user involvement are also covered. Course prepares students to improve organizational functions through the System Development Life-Cycle in roles varying from System Analyst to System User. A real-world application is conducted through a term project.
Credit Hours: 3.00
Format: Class/Project/Cases
Prerequisites: 8331 or equivalent
Projected Offering: Spring

8458 NEGOTIATIONS AND CONFLICT MANAGEMENT
Designed for relevance to the broad spectrum of bargaining problems faced by the manager and professional. Provides understanding of the theory and processes of negotiation as practiced in a variety of settings, including government, commercial and labor negotiations. Special emphasis on sources of power in negotiations. Covers conflict management as a first party and as a third party (third party skills include helping others deal directly with their conflicts, mediation, investigation, arbitration, and helping the system itself to change as a result of a dispute. Allows students an opportunity to develop negotiations skills experientially and to understand negotiation in a useful analytical framework. Emphasizes simulations, exercises, role playing, and cases.
Credit Hours: 3.00
Format: Class/Seminar
Prerequisites: 8211
Projected Offering: Fall

8460 COST ACCOUNTING
This course provides a comprehensive study of the field of cost accounting, one of the critical accounting skill sets required for all practicing financial managers. Topics covered briefly in Managerial Accounting will be expanded upon, while additional advanced topics, such as joint cost allocation, will be introduced. Students will increase their analytical skills and ability to work with complex cost problems including the development of budgets and capital budgeting procedures. Topics will be explored from several perspectives: for-profit versus governmental standards, integration with financial accounting, and international vs. US standards and practices. Successful completion of Financial Accounting (8246) and Managerial Accounting (8348) are required for admittance to this course.
Credit Hours: 3.00
Format: Class
Prerequisites: 8246, 8446, and 8348 or permission of Instructor
Projected Offering: Fall

8461 SUPPLY CHAIN MANAGEMENT
The concepts, issues, and techniques for managing supply chains. Topics include transportation economics, material and distribution requirements, electronic communication and tracking systems, and international supply chain planning.
Credit Hours: 3.00
Format: Class/Seminar
Prerequisites: 8115, 8217
Projected Offering: On Demand

8468 DIRECTED STUDIES IN FINANCE, ACCOUNTING, AND ECONOMICS
Provides the student an opportunity to work closely with a faculty member in an area of mutual interest. Potential topics include, but are not limited to, investment theory, risk management, option pricing, and
advanced topics in corporate finance. Directed Studies proposal must be submitted in writing and approved by the Department Head, applicable Section Head, and sponsoring faculty member prior to the beginning of the semester.
Credit Hours: 3.00
Format: Directed Studies
Prerequisites: 8217, 8348, 8349, or equivalent courses
Restrictions: 1/c Management majors and approval of Department Head
Projected Offering: On demand

8469 DIRECTED STUDIES IN MANAGEMENT AND LEADERSHIP
An in-depth, major research effort in an area of mutual interest to cadet and faculty member directing study. Potential topics include, but are not limited to leadership, consumer behavior, real estate phenomenon, nature of military organizations, etc. Directed Studies proposal must be submitted in writing and approved by the Department Head, applicable Section Head, and sponsoring faculty member prior to the beginning of the semester.
Credit Hours: 3.00
Format: Directed Studies
Prerequisites: 8366
Restrictions: 1/c Management majors and approval of Department Head
Projected Offering: On demand

8470 DIRECTED STUDIES IN INFORMATION SYSTEMS AND DECISION SCIENCES
Provides the student with an opportunity to work closely with a faculty member in an area of mutual interest. Potential topics include, but are not limited to, development of database applications, web applications, understanding and application of new technologies, and advanced topics in information systems and decision sciences. Directed Studies proposal must be submitted in writing and approved by the Department Head, applicable Section Head, and sponsoring faculty member prior to the beginning of the semester.
Credit Hours: 3.00
Format: Directed Studies
Prerequisites: 8331, 8363 or equivalent courses
Projected Offering: On demand
PROJECTED OFFERINGS

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>'17-'18</th>
<th>'18-'19</th>
<th>'19-'20</th>
<th>'20-'21</th>
</tr>
</thead>
<tbody>
<tr>
<td>0901</td>
<td>History of the USCG</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>0924</td>
<td>Connecticut College</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>0925</td>
<td>Scholar’s Project</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>0933</td>
<td>Jr Hrs Colloquium</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>0935</td>
<td>Sr Hrs Colloquium</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>0940</td>
<td>Peer Tutoring</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>0941</td>
<td>Peer Tutoring</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>1104</td>
<td>Intro to Computing</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>1105</td>
<td>Intro to Computing (H)</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>1118</td>
<td>Engineering Mech-Statics</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>1204</td>
<td>Eng Material Science</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1206</td>
<td>Mechncs of Materials</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>1208</td>
<td>Into Mech Engr Dsgn</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1209</td>
<td>Materials for Civil Engr (T)</td>
<td>F</td>
<td>F</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1210</td>
<td>Materials for Civil Engr</td>
<td>F</td>
<td>F</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1211</td>
<td>Dynamics</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1212</td>
<td>Analytl Methods Engr</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1218</td>
<td>Elec Engineering I</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1220</td>
<td>Trans to Obj Ori Prog</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1222</td>
<td>Sgnls/Sys & Trnsfrms</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1224</td>
<td>Intro Comp Prog</td>
<td>F</td>
<td>F</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1225</td>
<td>Digital Circ/Cmp Sys</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1304</td>
<td>Soil Mechanics</td>
<td>S</td>
<td>S</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1309</td>
<td>Environmental Engr I</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1310</td>
<td>Environmental Engr Lab</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1311</td>
<td>SpclTpcs Geotech Engr</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1312</td>
<td>Transportation Engr</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1313</td>
<td>Steel Design</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1317</td>
<td>Struct Analysis</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1321</td>
<td>Elec Cir & Machines</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1322</td>
<td>Linear Circuits</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1323</td>
<td>Antennas & Propagatn</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1325</td>
<td>Computer Comms & Ntwks</td>
<td>F</td>
<td>F</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1328</td>
<td>Software Engineering</td>
<td>F</td>
<td>F</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1329</td>
<td>Digital Signal Press</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1330</td>
<td>Comp & Net Security</td>
<td>S</td>
<td>S</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1331</td>
<td>Automatic Cntrl Sys</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1332</td>
<td>Prin Elec Comm Sys</td>
<td>S</td>
<td>F</td>
<td>S</td>
<td>F</td>
</tr>
<tr>
<td>1340</td>
<td>Fluid Mechanics</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1342</td>
<td>Prin of Naval Arch</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>1343</td>
<td>Applied Naval Arch</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1351</td>
<td>Thermodynamics</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1353</td>
<td>Thermal Systems Dsgn</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1355</td>
<td>Marine Engineering</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Course</td>
<td>Course Title</td>
<td>‘17-'18</td>
<td>‘18-'19</td>
<td>19-'20</td>
<td>‘20-'21</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>1356</td>
<td>Ship Structures</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1370</td>
<td>Mechanisms</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1395</td>
<td>Projects in Engr</td>
<td>F</td>
<td>S</td>
<td>S</td>
<td>F</td>
</tr>
<tr>
<td>1401</td>
<td>Const Proj Mgmt</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>1402</td>
<td>Civil Eng Design</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1404</td>
<td>Geotech Engr Design</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1407</td>
<td>Enviromntl Engr II</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1409</td>
<td>Water Resources Engr</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1411</td>
<td>Reinf Concrete Dsgn</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>1414</td>
<td>Struct Dsgn Extreme Events</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1419</td>
<td>Dir Studies in CE</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1420</td>
<td>Electromech Sys</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1422</td>
<td>Communication Sys</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1426</td>
<td>Capstone Proj/EE I</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1431</td>
<td>Electronic Nav Sys</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1435</td>
<td>Intro Aerodynamics</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1436</td>
<td>Capstone Proj/EE II</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1437</td>
<td>Engr Experimentation</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1439</td>
<td>Dir Studies/EE</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>1440</td>
<td>Machine Design</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1442</td>
<td>Prin of Ship Design</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1444</td>
<td>Ship Dsgn/Sys Intgr</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1446</td>
<td>Mechanical Engr Dsgn</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1447</td>
<td>Marine Casualty Resp</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1451</td>
<td>Intro to Seakeeping</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1453</td>
<td>Ship Propulsion Dsgn</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1457</td>
<td>Small Craft Design</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1459</td>
<td>Heat Transfer</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1462</td>
<td>Mechatronics</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1466</td>
<td>HVAC Principles</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>1468</td>
<td>Projects in NA&ME</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1469</td>
<td>Dir Studies/NA&ME</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1479</td>
<td>Dir Studies/ME</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>1482</td>
<td>Design Project Mgt</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1489</td>
<td>Sel Topics Elec Engr</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1491</td>
<td>FE Review</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1493</td>
<td>Engineering Ethics</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2101</td>
<td>Intro College Comm</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2111</td>
<td>College Composition</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2121</td>
<td>Art of Effctv Wrtng</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2131</td>
<td>Amer Social Movements</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2132</td>
<td>Ethnic Lit in America</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2133</td>
<td>Intro Latin Amer Culture</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2142</td>
<td>Comp Problem Solving</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2163</td>
<td>American Government</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2235</td>
<td>Spanish I</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2236</td>
<td>Spanish I/II</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Course</td>
<td>Course Title</td>
<td>'17-'18</td>
<td>'18-'19</td>
<td>'19-'20</td>
<td>'20-'21</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>2237</td>
<td>Spanish II</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2241</td>
<td>Modern European Civ</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>2242</td>
<td>World Civilizations</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>2265</td>
<td>Comparative Politics</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2267</td>
<td>American Congress</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2269</td>
<td>Natl Security Policy</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>2272</td>
<td>Political Partcptn</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>2274</td>
<td>Intl Political Econ</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>2276</td>
<td>Contem. U.S. For. Policy</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2281</td>
<td>Intell & Democracy</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2282</td>
<td>Intell & Cyber Ops</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2293</td>
<td>Moral/Ethcl/Pol/Phil</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2324</td>
<td>Lit Hum/Cnf: US Latinos</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2325</td>
<td>Lit Hum/Cnf: Epics/Myths</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2331</td>
<td>CG Spanish</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2335</td>
<td>Spanish III</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2336</td>
<td>Conversonal Spanish</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2337</td>
<td>Spanish IV</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2338</td>
<td>Cultr/Pol Latin Am</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2341</td>
<td>The Civil War Era</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2343</td>
<td>Latin Am Exp: Cultural App</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>2344</td>
<td>Intro Latin Am Studies</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>2352</td>
<td>Cnf Res/Diplmcy/Nego</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2355</td>
<td>Public Policymaking</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2358</td>
<td>Pol N Afr & MidEast</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2359</td>
<td>African Politics</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2360</td>
<td>Sel Topics in Phlsphy</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2361</td>
<td>Intro Political Theory</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2362</td>
<td>Homeland Sec Plcy</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2363</td>
<td>Contem Pol Theory</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>2367</td>
<td>Intnrtl Relations</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2370</td>
<td>Amer President Polcy</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2371</td>
<td>Area Studies</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2373</td>
<td>Religion/Phil/Islam</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2374</td>
<td>Irregular War</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2375</td>
<td>Strategic Intell</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2376</td>
<td>Amer Politcl Culture</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2377</td>
<td>Politics of China</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2378</td>
<td>Asia in World Affairs</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2379</td>
<td>Study of the Koran</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2392</td>
<td>Maritime Std: SelTpc</td>
<td>S</td>
<td>F</td>
<td>S</td>
<td>F</td>
</tr>
<tr>
<td>2393</td>
<td>Moral & Ethical Phil</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2394</td>
<td>Ethics</td>
<td>S</td>
<td>F</td>
<td>S</td>
<td>F</td>
</tr>
<tr>
<td>2395</td>
<td>Rhthic & Crtrm Advocacy</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>2396</td>
<td>National Sec Law</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2397</td>
<td>Constit Law & H. S.</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2398</td>
<td>Law</td>
<td>S</td>
<td>F</td>
<td>S</td>
<td>F</td>
</tr>
<tr>
<td>2421</td>
<td>Spcl Stds/Humanities</td>
<td>S</td>
<td>F</td>
<td>S</td>
<td>F</td>
</tr>
</tbody>
</table>

125
<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>'17-'18</th>
<th>'18-'19</th>
<th>'19-'20</th>
<th>'20-'21</th>
</tr>
</thead>
<tbody>
<tr>
<td>2429</td>
<td>Craft of Creative Writing</td>
<td>F</td>
<td>F</td>
<td>S</td>
<td>F</td>
</tr>
<tr>
<td>2439</td>
<td>Advanced Spanish</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2463</td>
<td>Maritime Policy/Strat</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2465</td>
<td>U.S. Military Policy</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2467</td>
<td>Environ Pol & Ethics</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2468</td>
<td>Relg Pol & Globalzt'n</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2469</td>
<td>International Dev</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2472</td>
<td>Transntnl Threats</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2485</td>
<td>Global Studies</td>
<td>F</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2494</td>
<td>International Law</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2495</td>
<td>Adv Studies/Govt</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2497</td>
<td>Senior Thesis Govt</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2499</td>
<td>Adv Research Proj</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>3107</td>
<td>Foundation for Calculus</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>3111</td>
<td>Calculus I</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>3115</td>
<td>Calculus II (V)</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>3117</td>
<td>Calculus II</td>
<td>F</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>3211</td>
<td>Multivariable Calc</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>3213</td>
<td>Probability & Stat</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>3215</td>
<td>Differential Eqtns</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>3221</td>
<td>Linear Algebra</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>3231</td>
<td>Linear Optimization</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>3235</td>
<td>Comp Model Languages</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>3236</td>
<td>Information Systems</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>3237</td>
<td>Discrete Mathematics</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>3301</td>
<td>Adv Engineering Math</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>3333</td>
<td>Network & Nonlin Optim</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>3334</td>
<td>Intermediate Det Models</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3335</td>
<td>Comp Model Languages</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3336</td>
<td>Information Systems</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3337</td>
<td>Algorithms w/Applications</td>
<td></td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>3341</td>
<td>Probability Theory</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>3343</td>
<td>Mathematical Stats</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>3351</td>
<td>Probability Models</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>3447</td>
<td>Linear Regression</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>3453</td>
<td>Decision Models</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>3463</td>
<td>Simulation w/Risk Anlys</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>3470</td>
<td>Operations Analysis Prep</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>3471</td>
<td>Operations Analysis</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>3479</td>
<td>Dir Studies/OR</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>3482</td>
<td>SelTpcs: Mathematics</td>
<td>S</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>3483</td>
<td>SelTpcs: Ops Research</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>3484</td>
<td>SelTpcs: Statistics</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>3485</td>
<td>SelTpcs: Comp Analysis</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>4101</td>
<td>Dvlmntl Swimming</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>4102</td>
<td>Prin Fitness/Well I</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>4103</td>
<td>Personal Defense I</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>4111</td>
<td>Swimming</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Course</td>
<td>Course Title</td>
<td>`17-'18</td>
<td>`18-'19</td>
<td>`19-'20</td>
<td>`20-'21</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>4112</td>
<td>Prin Fitness/Well II</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>4204</td>
<td>Lifetime Sports I/RQB</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>4214</td>
<td>Lifetime Sports II: Golf</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>4222</td>
<td>Professional Rescuer</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>4303</td>
<td>Personal Defense II</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>4304</td>
<td>Lifetime Sports III: Tennis</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>4400</td>
<td>Remdial Physic Tng</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>4405</td>
<td>Adventure Sports I:RC</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4407</td>
<td>Dance</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>4411</td>
<td>Scuba Diving</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>4414</td>
<td>Advanced Golf</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>4415</td>
<td>Adventure Sports II</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>4439</td>
<td>Theory of Coaching</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>4444</td>
<td>Indoor Recrtnl Sports</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>4459</td>
<td>Sport/Wellness Leader</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>4464</td>
<td>Strength & Conditioning</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>4489</td>
<td>Sel Topics/HPE</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>5102</td>
<td>Chemistry I</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>5162</td>
<td>Physics I</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>5206</td>
<td>Chemistry II</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>5208</td>
<td>Chemistry II (H)</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>5232</td>
<td>Marine Biology</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>5234</td>
<td>Marine Geochemistry</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>5238</td>
<td>Physical Oceanography</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>5240</td>
<td>Meteorology</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>5247</td>
<td>Projects in Mar Sci</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>5257</td>
<td>Projects in Physics</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>5266</td>
<td>Physics II</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>5302</td>
<td>Organic Chemistry I</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>5312</td>
<td>Analytl Methods/Chem</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>5330</td>
<td>Geospatial Sciences I</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>5334</td>
<td>Fisheries Biology</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>5338</td>
<td>Marine Forecasting</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>5342</td>
<td>Bio/Chemical Oceans</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>5350</td>
<td>Ocean Dynamics</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>5352</td>
<td>Waves & Tides</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>5366</td>
<td>Astronomy</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5379</td>
<td>Dir Studies/MarSci</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>5389</td>
<td>Dir Studies/Physics</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>5399</td>
<td>Dir Studies/Chem</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>5406</td>
<td>Physical Chemistry</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>5415</td>
<td>Fate/Transport Chems Env</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>5417</td>
<td>Toxicology</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>5419</td>
<td>Biochemistry</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>5420</td>
<td>Chemometrics</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>5421</td>
<td>Projects in Chem</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>5429</td>
<td>Research in Chem</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>5430</td>
<td>Geospatial Sciences II</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Course</td>
<td>Course Title</td>
<td>‘17-‘18</td>
<td>‘18-‘19</td>
<td>‘19-‘20</td>
<td>‘20-‘21</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>5436</td>
<td>Coastal Oceanography</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>5440</td>
<td>Microbiology</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5441</td>
<td>Petroleum & Oil Spill Sci</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>5442</td>
<td>Marine Ecology</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>5443</td>
<td>Atmospheric & Mar Sci</td>
<td>S</td>
<td>F</td>
<td>S</td>
<td>F</td>
</tr>
<tr>
<td>5444</td>
<td>Research in Physics</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>5445</td>
<td>Research in Mar Sci</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>5446</td>
<td>Research in GS</td>
<td>S</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>5447</td>
<td>Polar Oceans</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>5448</td>
<td>Optics</td>
<td></td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>5449</td>
<td>SelTpcs: Chemistry</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>5450</td>
<td>Ethics</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>5451</td>
<td>SelTpcs: Physics</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>5452</td>
<td>SelTpcs: Mar Science</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>6101</td>
<td>Fund of Navigation</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>6201</td>
<td>Ships & Maritime Sys</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>6202</td>
<td>Apps in Nav Lab</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>6210</td>
<td>Pvt Pilot Grnd Sch</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>6301</td>
<td>Maritime Watch Offcr</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>6302</td>
<td>Marine Safety Prof</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>6401</td>
<td>SelTps 100 Ton Master</td>
<td>F</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6402</td>
<td>SelTps 100 Ton Master Lab</td>
<td>F</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6403</td>
<td>Proj in Pro Mar Dev</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>6404</td>
<td>Dir Stds ProMarDev</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>8115</td>
<td>Macroeconomic Prin</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>8201</td>
<td>Intro to Mgmt & Bus</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>8211</td>
<td>Org Behavior/Ldrshp</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>8217</td>
<td>Microeconomic Prin</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>8241</td>
<td>Legal Environ Bus</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>8246</td>
<td>Financial Accounting</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>8313</td>
<td>Essentials of Economics</td>
<td>S</td>
<td>F</td>
<td>S</td>
<td>F</td>
</tr>
<tr>
<td>8331</td>
<td>Management Info Sys</td>
<td>S</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>8342</td>
<td>Marketing</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>8348</td>
<td>Managerial Accounting</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>8349</td>
<td>Financial Management</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>8351</td>
<td>Research Methods</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8357</td>
<td>Human Resources Mgt</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>8363</td>
<td>Operations/Project Mgmt</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>8366</td>
<td>Ldrship/Org Dev/Chg</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>8413</td>
<td>Managerial Econ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8415</td>
<td>Personal Finance</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>8417</td>
<td>Investment Theory</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>8419</td>
<td>Info Tchnlgy in Orgs</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>8423</td>
<td>Management Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course</td>
<td>Course Title</td>
<td>‘17-’18</td>
<td>‘18-’19</td>
<td>19-20</td>
<td>‘20-’21</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>8425</td>
<td>Global Bus & Econ</td>
<td></td>
<td>F</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>8429</td>
<td>Managerial Psychology</td>
<td></td>
<td>F</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>8439</td>
<td>Diversity and Leadership</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>8440</td>
<td>Federal Budgeting</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>8442</td>
<td>Public Sector Economics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8443</td>
<td>Strategic Management</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>8444</td>
<td>PMC Prep</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>8445</td>
<td>Public Mgmt Consult</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>8446</td>
<td>Intern Financial Acct</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>8447</td>
<td>Auditing & Internal Control</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>8448</td>
<td>SelTopics Fin/Accounting/EC</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>8449</td>
<td>Sel Topics IS/DS</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>8450</td>
<td>Sel Topics in Leadership</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>8453</td>
<td>Systems Analysis & Design</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>8458</td>
<td>Negotiation & Conflict Mgmt</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>8460</td>
<td>Cost Accounting</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>8461</td>
<td>Supply Chain Mgmt</td>
<td></td>
<td></td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>8468</td>
<td>Dir Study/Fin/Accounting/EC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8469</td>
<td>Dir Studies/Mgmt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8470</td>
<td>Dir Studies in IS/DS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PART VI — DIRECTORY

BOARD OF TRUSTEES

William G. Kelly, Rear Admiral, Assistant Commandant for Human Resources (CG-1), Chair
Leilani CaleJones, Master Chief, Rep of Master Chief Petty Officer of the Coast Guard (CG-00B)
Ellen Engleman Connors, Deputy Director of Governmental & Public Affairs (CG-092)
Linda L. Fagan, Deputy for Operations Policy and Capabilities (CG-DCO-D)
Mr. Curtis B. Odom, Director of Personnel Management (CG-12)
Michael J. Haycock, Rear Admiral Assistant Commandant for Acquisition & Chief Acquisition Officer (CAO) (CG-9)
Kevin E. Lunday, Rear Admiral, Assistant Commandant for C4 and Info Technology (CG-6)
Francis S. Pelkowski, Rear Admiral, DCO Senior Reserve Officer
Andrew J. Tiongson, Rear Admiral, Assistant Commandant for Resources (CG-8)
David G. Throop, Rear Admiral, Commander, 13th Coast Guard District
James E. Rendon, Rear Admiral, Superintendent US Coast Guard Academy (USCGA)

Special Representatives

John Maxham, Chairman Coast Guard Academy Alumni Association
Sally Brice O’Hara, Vice Admiral, USCG, Ret., Coast Guard Foundation
Richard W. Schneider, Rear Admiral, USCGR, Ret., President, Norwich University
James Losi, Coast Guard Auxiliary

Executive Secretaries

Gregory T. Prestidge, Captain, Executive Assistant to the Asst Commandant for Human Resources (CG-1)
Ronald A. LaBrec, Captain, Assistant Superintendent US Coast Guard Academy (USCGA)

Office of the Superintendent

James E. Rendon, Rear Admiral, USCG, Superintendent
Ronald A. LaBrec, Captain, USCG, Assistant Superintendent
Brett VerHulst, Master Chief, USCG, Command Master Chief
Gregory K. Sabra, Commander, USCG, Planning Officer
Heather Imbriale, Lieutenant, USCG, M.B.A., Assistant Planning Officer/Superintendent’s Aide
Bonnie Fogell, YNC (Ret.), USCG, Executive Assistant to the Superintendent

EMERITI Distinguished Professors Emeriti

Robert G. Boggs, Professor, Ph.D., P.E.
Thomas D. Combs, Jr., Captain, USCG (Ret.), Ph.D.
Irving H. King, Professor, Ph.D.
Albert L. Lawrence, Captain, USCG (Ret., Dec.)
Ernest J. Manfred, Professor, Ph.D.
Nathan L. Marvin, Professor, M.A.
Nelson W. Nitchman, Professor, B.A.
Ephraim P. Rivard, Captain, USCG (Ret.)
Stanley L. Smith, Captain, USCG (Ret.), M.S.
Roderick M. White, Captain, USCG (Ret.), Sc.D.

Professors Emeriti

Michael A. Alfultis, Captain, USCG (Ret.), Ph.D.
Robert C. Ayer, Captain, USCG (Ret.), Ph.D.
G. Phillip Boeding, Professor, M.S.
Gaston N. Buron, Professor, Ph.D. (Posthumously)
Geoffrey A. Cardinali, Associate Professor, M.A.
Mark B. Case, Captain, USCG (Ret.), Ph.D.
J. Richard Christman, Professor, Ph.D.
Richard T. Close, Professor, Ph.D.
John D. Crowley, Professor, Ph.D.
Attilio E. DeFilippis, Associate Professor, M.A.
Robert L. DeMichiell, Captain, USCG (Ret.), Ph.D.
Charles Dennis, Associate Professor, M.S.
Gregg W. Dixon, Professor, Ph.D.
Robert Dixon, Jr., Assistant Professor
John R. Donnellan, Associate Professor, M.S.
Howard C. Dunn, Jr., Professor, Ph.D.
Joseph B. Egan, Captain, USCG (Ret.), Ph.D.
Edwin Emery, Professor, Ph.D. (Posthumously)
Lucretia A. Flammang, Captain, USCG (Ret.), Ph.D.
Paul F. Foye, Captain, USCG (Ret.), M.A. (Posthumously)
Robert J. Fuller, Captain, USCG (Ret.), Ph.D.
Richard B. Gaines, Captain, USCG (Ret.), Ph.D.
Bruce S. Gathy, Professor, Ph.D.
Otto E. Graham, Captain, USCG (Ret.), B.A.
Wayne R. Grondlund, Captain, USCG (Ret.), Ph.D.
Keith C. Gross, Professor, Ph.D. (Posthumously)
Thomas J. Haas, Captain, USCG (Ret.) Supervisory Professor, Ph.D.
J. Barton Hoag, Captain, USCG (Ret.) Ph.D. (Posthumously)
Paul H. Johnson, Associate Professor, M.A., M.A.L.S.
Raymond A. Kambeitz, Associate Professor, M.S.
Frank S. Kapral, Captain, USCG (Ret.), M.S.
Leonard J. Kelly, Captain, USCG (Ret.), Ph.D.
Ronald C. Kollmeyer, Captain, USCG (Ret.), Ph.D.
Saul Krasner, Professor, Ph.D.
John B. Mahon, Captain, USCG (Ret.), M.A.
Ernest J. Manfred, Professor, D.A.
Phillip I. Mathew, Professor, Ph.D.
David A. McGill, Professor, Ph.D. (Posthumously)
Michael E. McKaughan, Professor, Ph.D.
Jordon L. Pecile, Professor, M.A.
Raymond J. Perry, Captain, USCG, Ph.D.
Don C. Pinhey, Associate Professor, M.S.
Earl H. Potter III, Captain, USCG (Ret.), Ph.D.
Robert E. Reed-Hill, Captain, USCG (Ret.)
Faye J. Ringel, Professor, Ph.D.
Jonathan C. Russell, Captain, USCG (Ret.), Ph.D., PE
Larry E. Rutledge, Associate Professor, M.S.
David A. Sandell, Captain, USCG (Ret.), Ph.D.
William A. Sanders, Supervisory Professor, Ph.D.
Carl W. Selin, Captain, USCG (Ret.), Ph.D.
Bruce C. Skinner, Captain, USCG (Ret.), Nav.E
Richard E. Slimak, Professor, Ph.D.
Gwendolyn R. Stevens, Professor, Ph.D.
Douglas S. Tolderlund, Professor, Ph.D.
David W. Weber, Professor, Ph.D.
Sherman S. Weidenbaum, Professor, Ph.D.
Ronald A. Wells, Captain, USCG (Ret.), Ph.D.
Nils H. Wessell, Professor, Ph.D.
Vincent Wilczynski, Captain, USCG (Ret.), Ph.D
Malcolm J. Williams, Captain, USPHS (Ret.), Ph.D. (Dec.)
Joseph J. Wolcin, Professor, Ph.D.
Jimmie D. Woods, Captain, USCG (Ret.), Ph.D.
Judith A. Youngman, Professor, Ph.D.

ACADEMY PERSONNEL

Office of the Superintendent
James E. Rendon, Rear Admiral, USCG, Superintendent
Ronald A. LaBrec, Captain, USCG, Assistant Superintendent
Joseph Smith, Master Chief, USCG, Command Master Chief
Gregory K. Sabra, Commander, USCG, Planning Officer
Heather Imbriale, Lieutenant, USCG, M.B.A., Assistant Planning Officer/Superintendent’s Aide
Bonnie Fogell, YNC (Ret.), USCG, Executive Assistant to the Superintendent

Institutional Research
Leonard M. Giambra, Ph.D., Director, Institutional Research
Jose M. Rosario, Lieutenant Commander, USCG, Assistant Director
Vacant, Statistical Assistant

Chaplain’s Office
Michael J. Parisi, Captain, CHC, USN, Command Chaplain
Richard L. Roe, Commander, CHC, USN, Staff Chaplain
Monya A. Stubbs, Lieutenant, CHC, USN, Staff Chaplain
Judy Zakutansky, Administrative Assistant

Civil Rights Office
Roy P. Ziegengeist, Civil Rights/Equal Employment Manager Region 1 Zone 2 Civil Rights Directorate

Legal
Ben Karpinski, Commander, USCG, J.D., Staff Judge Advocate/Legal Officer
Jonathan Shumate, Lieutenant Commander, USCG, J.D., Deputy Staff Judge Advocate/Legal Officer
Abby Lafond, Lieutenant, USCG, J.D., Assistant Staff Judge Advocate/Legal Officer

Museum
Jennifer Gaudio, Museum Curator

Center for Counseling and Development
Robert Murray, Ed.D., Professor, Director of Counseling, Licensed Psychologist

ACADEMIC DIVISION
Kurt J. Colella, Captain, USCG (Ret.), Ph.D., Professor, P.E., Dean of Academics
Gregory J. Hall, Commander, USCG, Ph.D., Associate Dean (collateral)
Meghan K. Steinhaus, Lieutenant Commander, USCG, Ph.D., Assistant Dean (collateral)
Eric C. Johnson, Ph.D., Associate Professor, Director, Academic Advising (collateral)
Joyce Hatch, Administrative Assistant
David Johnson, Administrative Assistant

Registrar
Donald E. Dykes, M.S., Registrar
Philip E. Muir, M.S., Associate Registrar

132
Christopher White, Education Support Assistant

Library
Lucy Maziar, Library Director
Rebecca Harris-Pierce, Systems Librarian
Pamela Graham, Head of Reference and Instruction
Joan Clark, Reference and Instruction Librarian
Elisa Graydon, Technical Services Librarian
Pauline Lamarre, Acquisitions Technician
Janet Whitty, Cataloging/Serials Technician
Roxanne Korpal-Gosvener, ILL Technician
Kat Lubrani, Library Technician

Engineering Department
Sharon Zelmanowitz, Ph.D., P.E., Professor, Department Head and Dean of Engineering

Civil Engineering Section
Corinna Fleischmann, Commander, USCG, Ph.D., P.E., Section Chief and Program Chair
Mark Braxton., Lieutenant Commander, USCG, M.S., MBA, P.E., PMP
Luis Garcia, Lieutenant, USCG, M.S., P.E.
Christopher Grabe, Lieutenant, USCG, M.S.
Hudson Jackson, Ph.D., P.E., Dipl-Ing, Associate Professor
Brian Maggi, Commander, USCG, M.S., P.E
David F. Mazurek, Ph.D., P.E., Professor
M. Shalane Regan, M.S., Lecturer
Kassim Tarhini, Ph.D., P.E., Professor
Shelly Wyman., MS, Lecturer

Electrical Engineering Section
Kelly C. Seals, Commander, USCG, Ph.D., P.E., Section Chief and Program Chair
Joseph T. Benin, Lieutenant Commander, USCG, Ph.D., P.E.
Paul B. Crilly, Ph.D., Professor
Tooran Emami, Ph.D., Associate Professor
Richard J. Hartnett, Captain, USCG (Ret.), Ph.D., P.E., Professor
Lee Hartshorn, Lieutenant Commander, USCG, M.S., M.B.A.
Stephen A. Hills, Lieutenant, USCG, M.S.
Scott Howie, National Security Agency Visiting Professor, M.S.
Peter Hsieh, M.C.J., Lecturer
Michael Kapralos, M.S., Lecturer
Ali M. Reza, Ph.D., Professor
Jennifer Rogers, Lieutenant, USCG, M.S.
Grant C. Wyman, Lieutenant Commander, USCG, M.S.
Kimberly Young-McLear, Lieutenant Commander, USCG, Ph.D.

Mechanical Engineering Section
Michael Plumley, Commander, USCG, Ph.D., P.E., Section Chief and Program Chair
Ronald S. Adrezin, Ph.D., P.E., Professor
Christopher Cart, M.S., P.E., Lecturer
Andrew Foley, Ph.D., P.E., Professor
Richard Freeman, Ph.D., P.E., Lecturer
Joshua D. Pennington, Commander, USCG, M.S.
Alex Tsai, Ph.D., P.E., Lecturer
Matthew Walker, Commander, USCG, M.S., P.E.

Naval Architecture and Marine Engineering Section
Thomas W. DeNucci, Commander, USCG, Ph.D., Section Chief and Program Chair
Michael J. Corl, Captain, USCG, Ph.D.
Michael Dueffler, Lieutenant, USCG, M.S.
Elizabeth M. Garcia, Ph.D, Associate Professor
John Goshorn, Lieutenant Commander, M.S., MBA
Paul H. Miller, D.Eng, P.E., Associate Professor
James Schock, Lieutenant Commander, USCG, M.S., P.E.
William M. Simpson, Jr., Captain, USCG (Ret.), Ph.D., P.E., Associate Professor
Todd E. Taylor, Ph.D., Professor
Judson Wheeler, Lieutenant Commander, USCG, M.S.

Humanities Department
Brigid Pavilonis, Captain, USCG, Ph.D., Department Head

Law Section
David Sherry, Commander, USCG, J.D., L.L.M., Section Chief
Jeremy McCall, Lieutenant, USCG, J.D.
Robert Stiles, Lieutenant Commander, USCG, J.D.
Sloan Tyler, J.D., Lecturer

English and Foreign Languages Section
Alexander Waid, Ph.D., Professor, Section Chief
Keith Clavin, Lecturer
Jose B. Gonzalez, Ph.D., Professor
Lauren Kuryloski, Lecturer
Christopher J. LaCasse, Ph.D., Lecturer
Elizabeth Rivero, Ph.D., Associate Professor
Dan Stepler, M.A., Lieutenant, USCG
Karen A. Wink, Ph.D., Professor

Government/History/Ethics Section
Russell Bowman, Commander, USCG, J.D., Ph.D., Section Chief and Program Chair
Diane Boucher, Ph.D., Lecturer
Joseph Callaghan, Commander, USCG, M.S.S.I.
Ginger Denton, Ph.D., Associate Professor
Michael Fiori, Lieutenant, USCG, M.S.S.I.
Tony Gregg, Lieutenant, USCG, M.A.
Evan Haglund, Ph.D., Assistant Professor
Lisbeth Keefe, State Department Liaison, Lecturer
Christopher LaMonica, Ph.D., Associate Professor
Melissa Matthes, Ph.D., Professor
Andrew MacDonald, Lecturer
George MacDonnell, Lieutenant Commander, USCG, M.A.
Jeremy McKenzie, Lieutenant Commander, USCG, M.S.Sc., M.B.A., M.P.P.
Rebecca Pincus, Ph.D., Class of 65 Arctic Scholar
Monya, Stubbs, Lieutenant, CHC, USN, Ph.D.
Jonathan Tschudy, Lieutenant Commander, USCG, M.A.
Ahmad Wardak, M.A., Lecturer
Erik Wingrove-Haugland, Ph.D., Professor
Richard Zuczek, Ph.D., Professor, Deputy Department Head

Mathematics Department
Melinda D. McGurer, Captain, USCG, Ph.D., Department Head
Mary Bender, Lieutenant Commander, USCG, M.S.
Dana Dougherty, Lieutenant, USCG, M.S.
Timothy Fill, M.S., Lecturer
Ian D. Frommer, Ph.D., Professor
Susan Fuller, M.S., Lecturer
Ryan Hamel, Commander, USCG, M.S.
Jonathan Harris, Lieutenant Commander, USCG, M.A.
Eric C. Johnson, Ph.D., Associate Professor
Katherine B. Krystinik, Ph.D., Professor
Zachary Kudlak, Ph.D. Assistant Professor
John Lehet, M.A., Lecturer
Charles F. McCarthy, Auxiliary Lieutenant Commander, USCG (ret), M.S.
Janet A. McLeavey, Ph.D., Professor
Jillian E. McLeod, Ph.D., Assistant Professor
Jarrett Parker, Lieutenant Commander, USCG, M.S.
David W. Ratner, Lieutenant Commander, USCG, M.S.
Meghan K. Steinhaus, Lieutenant Commander, USCG, Ph.D.
Matthew B. Williams, Lieutenant Commander, USCG, M.S.

Science Department

Richard W. Sanders, Captain, USCG, Ph.D., Department Head

Chemistry Section

Joseph D. Brown, Commander, USCG, Ph.D., Section Chief
Glenn S. Fryisinger, Ph.D., Professor
Richard B. Gaines, Captain, USCG (ret), Ph.D.
Joshua P. Gray, Ph.D., Associate Professor
Gregory J. Hall, Captain, USCG, Ph.D.
Jacob Loman, Lieutenant, USCG, M.S.
Alexander C. Oliphant, M.S., Lecturer
Michael Persun, Lieutenant, USCG, M.S.
Patrick T. Plummer, Lieutenant, USCG, M.S.
Tara M. Schendorf, Lieutenant, USCG, M.S.

Marine Science Section

Deanna L. Bergondo, Ph.D., Associate Professor, Section Chief
Victoria C. Futch, Lieutenant Commander, USCG, M.S.
Karina L. Mrakovcich, Ph.D., Professor
Ben O’Loughlin, Lieutenant Commander, USCG, M.S.
Christopher Verlinden, Lieutenant, USCG, Ph.D.
Lucy S. Vlietstra, Ph.D, Associate Professor
Sam C. Wainright, Ph.D., Professor

Physics Section

Royce W. James, Lieutenant Commander, USCG, Ph.D., Section Chief
Lorraine A. Allen, Ph.D., Associate Professor
Jason Dahl, Ph.D. Lecturer
Mazin Khasawneh, Ph.D., Lecturer
Eric J. Page, Ph.D., Associate Professor
Aaron Paget, Ph.D., Lecturer
Richard N. Paolino, Ph.D., Professor
Brooke S. Stutzman, Ph.D., Associate Professor
James Toomey, Lieutenant, USCG, M.S.
Kyle Young, Lieutenant Commander, USCG, M.S.

Management Department

Kevin J. Lopes, Captain, USCG, DBA, Department Head
Michael S. Ginski, Lieutenant Commander, USCG, M.B.A./M.S./CPA
Laurel R. Goulet, Ph.D., Professor
William Hancock, Lecturer
Jonathan Heller, Lecturer
Anna W. Hickey, Commander, USCG, M.B.A.
Andrew Ju, Lecturer
Tyler E. Kelley, Lieutenant, USCG, M.B.A.
Michael D. McCarty, Lieutenant Commander, USCG, M.S.
James Noonan, M.B.A., Lecturer
Srinivas Nowduri, Cyber
David W. Sorich, M.B.A., Lecturer
Christine M. Westphal, J.D., Lecturer
John B. White, Ph.D., Professor
Ben Wroblewski, Lieutenant Commander, USCG, M.B.A.
Alina M. Zapalska, Ph.D., Professor
Nicholas P. Zieser, Lieutenant, USCG, M.B.A./M.S.

Health and Physical Education Department
Daniel Rose, Ed.D., Department Head, Associate Athletic Director, Professional Faculty
Kevin Bratland, M.A., Professional Faculty, Head Wrestling Coach
Ethan E. Brown, M.Ed., Professional Faculty, Director of Cross Country and Track and Field
Dana R. Fleischmann, M.S, Professional Faculty, HPE Section Chief, Assistant Football Coach, Assistant Softball Coach and Director of Intramurals
Bill George, M.S., Professional Faculty, Head Football Coach
Susan Grant, M.S., Professional Faculty, Head Soccer Coach (Women)
Ulysses M. Grant, M.S., Professional Faculty, Head Baseball Coach and Assistant Football Coach
Barry H. Hurst, B.S., USN Ret., Aquatics Instructor (OCS, LDC)
Alex Ivansheck, M.B.A., Professional Faculty, Head Basketball Coach (Women)
Kevin W. Jaskiewicz, M.S., Professional Faculty, Head Basketball Coach (Men)
Donna Koczajowski, M.S., Professional Faculty, Head Softball Coach
Raymond LaForte, M.S., Professional Faculty, Assistant Football and Assistant Track and Field Coach
Chris Parsons, M.S., Professional Faculty, Associate Athletic Director, Head Soccer Coach (Men)
John P. Westkott, M.S., Professional Faculty, Aquatics Director, Head Swimming Coach (Men and Women)
Mary Westkott, M.S., Professional Faculty, Assistant Swimming Coach (Men and Women)

Admissions Division
Robert McKenna, Captain, USCG, M.B.A., M.A., Director of Admissions
Sheryl Miner, Secretary

Recruiting
Crist Holveck, Lieutenant Commander, USCG, B.S., Associate Director of Admissions for Recruiting
Erika Barron, Lieutenant, USCG, B.A., Admissions Officer
Alexander Eames, Lieutenant, USCG, B.S., Admissions Officer
Tim Kessell, Lieutenant, USCG, B.A., Admissions Officer
Joan Grace Aquino, Lieutenant Junior Grade, USCG, B.S., Admissions Officer
Mia Reizun, Lieutenant Junior Grade, USCG, B.S., Admissions Officer

Diversity and Outreach
Daniel Pinch, M.S., Associate Director of Admissions for Diversity and Outreach
Christian Herold, Lieutenant, USCG, B.S., Coast Guard Academy Scholar (CGAS) Program Manager
Corinne Plummer, Lieutenant, USCG, B.S., Assistant Director of Campus Programs
Evette Humphries, Campus Program Support Staff

Marketing
Vacant, Associate Director of Admissions for Marketing
Bill Bauer, A.D., Marketing Support Staff

Operations
Chris McMunn, M.S., Associate Director of Admissions for Operations
Bill Anderson, Operations Support Staff
Brad Beckwith, Operations Support Staff

Volunteer Programs

Tamara McKenna, M.B.A, Associate Director of Admissions for Volunteer Programs
Megan Grills, B.S., Volunteer Programs Support Staff

Athletics Division

Timothy M. Fitzpatrick, M.S., Director of Athletics
Daniel Rose, Ed.D., Associate Athletic Director, HPE Department Head, Professional Faculty
Timothy Opstrup, M.B.A., Assistant Athletic Director, Athletic Business Manager
Robert Bono, Basketball Coach (Men’s Associate)
Katherine Bossardet, B.S., Athletic Division Administrative Assistant
Ethan E. Brown, M.Ed., Professional Faculty, Director of Cross Country and Track and Field
Bruce Cobb, Athletic Equipment Room Manager
Kevin Colasurdo, A.T.C., Athletic Trainer
Marina Dubrovsky, A.T.C., Athletic Trainer
Dana R. Fleischmann, M.S, Professional Faculty, HPE Section Chief, Assistant Football Coach, Assistant Softball Coach and Director of Intramural
Bill George, M.S., Professional Faculty, Head Football Coach
Susan Grant, M.S., Professional Faculty, Head Soccer Coach (Women)
Ulysses C. Grant, M.S., Professional Faculty, Head Baseball Coach, Assistant Football Coach
Marc Grindstaff, Equipment Room Staff
Jake Ivey, A.T.C., Athletic Trainer
Alex Ivansheck, M.B.A., Professional Faculty, Head Basketball Coach (Women)
Kevin W. Jaskiewicz, M.S., Professional Faculty, Head Basketball Coach (Men) and Assistant Baseball Coach
Donna Koczajowski, M.S., Professional Faculty, Head Softball Coach
Raymond Laforte, M.S., Professional Faculty, Assistant Football Coach, Assistant Track and Field Coach
Art Lamoureux, B.S., Athletic Operations Director
Rob McKnabb, M.S., Professional Faculty, Assistant Wrestling Coach
Jennifer Meuse, Director of Rowing, Head Rowing Coach (Women)
Shannon Nickels, A.T.C., Athletic Trainer
Ken Niedzwiecki, A.T.C., Head Athletic Trainer
Viola Oliver, Secretary Billard Hall
Chris Parsons, M.S., Professional Faculty, Assistant Athletic Director, Head Soccer Coach (Men)
Jason S. Southard, B.S., Sports Information Director
Andrea Stewart, Director of Travel and Contest Support, Senior Woman Administrator
John P. Westkott, M.S., Professional Faculty, Head Swimming Coach (Men and Women)
Mary Westkott, M.S., Professional Faculty, Assistant Swimming Coach (Men and Women)

Cadet Division

Melissa Rivera, Captain, USCG, B.S., M.A., Commandant of Cadets
Christine Rose, Administrative Assistant

Cadet Branch

Jonathan Theel, Commander, USCG, B.S., M.S., Assistant Commandant of Cadets
Laura Holveck, Lieutenant Commander, USCG, B.S., M.A., Cadet Activities/Regimental Officer
Jayna McCarron, Lieutenant USCG, B.S., M.A., Alfa Company Officer
Jared Silverman, Lieutenant, USCG, B.S., Bravo Company Officer
Ian J. Murray, Lieutenant, USCG, B.S., Charlie Company Officer
Michael Burke, Lieutenant, USCG, B.S., Delta Company Officer
Grant Johnson, Lieutenant, USCG, B.S., M.A., Echo Company Officer
Kevin Trujillo, Lieutenant, USCG, B.S., Foxtrot Company Officer
Charles Lumpkin, Lieutenant, USCG, B.S., Golf Company Officer
Nicholas Lajoie, Lieutenant, USCG, B.S., M.A., Hotel Company Officer
Joey Dore, Chief Petty Officer, USCG, Bravo Company Chief
Michael W. Presti, Chief Petty Officer, USCG, Charlie Company Chief
Andrew Painter, Chief Petty Officer, USCG, Delta Company Chief
James R. Burris, Chief Petty Officer, USCG, Echo Company Chief
Ashley Hayden, Chief Petty Officer, USCG, Foxtrot Company Chief
Michael S. Lucas, Chief Petty Officer, USCG, Golf Company Chief
Anthony Graziano, Chief Petty Officer, USCG, Company Chief
Nicholas Rago, Chief Petty Officer, USCG, Company Chief

Cadet Activities
Robert G. Newton, Ph.D., Assistant Professor, Director, Cadet Vocal Activities
Ian Frankel, Chief Warrant Officer, Director, Cadet Bands
Margaret J. Bowen, Director, Cadet Social Activities
Carey McNeil, Director, Cadet Activities
Steve Loyd, Chase Hall Building Manager

Cadet Professional Maritime Studies
Anthony Russell, Commander, USCG, B.S., M.A., Chief, Cadet Professional Maritime Studies
Patrick Powers, Lieutenant, USCG, B.S., Nautical Science I Course Coordinator & Instructor
Amanda Medeiros,
Daniel Miller, Lieutenant, USCG, B.S., Nautical Science I Instructor
Doug Bullock, Chief Petty Officer, USCG, B.S., Nautical Science I Instructor
Eric Johnson, Lieutenant, USCG, B.S., Nautical Science II Course Coordinator & Instructor
Myles McCarty, Lieutenant, USCG, B.S., Nautical Science II Instructor
Jackie Ramirez, Lieutenant, USCG, B.S., Nautical Science III Course Coordinator & Instructor
Curtis Gookin, Lieutenant, USCG, B.S., Nautical Science III Instructor
Jared Korn, Lieutenant, USCG, B.S., Nautical Science III Instructor
Andrew Dennelly, Lieutenant, USCG, B.S., Nautical Science IV Course Coordinator & Instructor
Michael Higbie, Lieutenant, USCG, B.S., Nautical Science IV Instructor
Katie Shveda, Lieutenant, USCG, B.S., Nautical Science IV Course Instructor
Anna-Elizabeth Villard-Howe, Lieutenant, NOAA, B.S., Nautical Science II Instructor
Vagan Bryant, Electronics Technician First Class, USCG, SCANTS Support Staff
Gary Stookey, USN (retired), SCANTS Contractor Support Staff
Colin Raffield, USN (retired), SCANTS Contractor Support Staff
Tom Kwasny, USCG (retired), SCANTS Contractor Support Staff

Cadet Training
Aaron Waters, Commander, USCG, M.S., Cadet Training Officer
Hoon Park, Lieutenant Commander, USCG, B.S., Assistant Training Officer and Character Development Officer
Rebecca Redstone, Lieutenant Junior Grade, USCG, B.S., Career Development Officer
Nick Mynuk, Curriculum Design Specialist
Paul Lahah, Chief Warrant Gunner, USCG, Armory Officer
Keith Denman, Chief Warrant Personnel Officer, USCG, Chief, Cadet Administration
Richard Hawkins, Ph.D., Head Coach, Varsity Rifle & Pistol Teams

Waterfront
Allen L. Kruger, II, Chief, Sailing and Seamanship
Douglas D. Clark, Director of Sailing
Charles Olsen, Waterfront Facility Manager
Jack Neades, Offshore Coach
Hartlie Kelly, Sail Training Instructor
Kevin Dooley, Assistant Sailing Coach
Christopher Klevan, Assistant Sailing Coach
Richard Locker, Maintenance Scheduler
John Teeson, Maintenance Scheduler
Peter Fenn, Maintenance Scheduler
Jeremiah McGeehan, Machinery Technician First Class, USCG
Kenneth Corey, Marine Maintenance Technician
Jack Grady, Marine Maintenance Technician
James Hartley, Marine Maintenance Technician
Steven Lemay, Marine Maintenance Technician
Nicholas Incerti, Marine Maintenance Technician
John Stewart, Marine Maintenance Technician

INFORMATION SERVICES DIVISION
Christopher M. Armstrong, Commander, USCG, M.S., Chief Information Officer
Karen A Smith, B.S., Deputy Chief Information Officer
Thomas J. Mason, Lieutenant, USCG, B.S., Information Services Security Officer

FACILITIES ENGINEERING BRANCH
Joshua W. Fant, Commander, USCG, M. Eng, M.S., P.E., PMP, CFM, Branch Chief

Construction and Engineering Section
Gregory J. Carabine, M.S., Chief, Construction and Engineering Section

Public Works Section
Robert Hunter, Lieutenant Commander, USCG, M.S., MBA, P.E., CFM Public Works Officer

Environmental and Safety Section
Mark Buck, M.S., P.E., Chief, Environmental, Safety and Fire Section

HEALTH, SAFETY, AND WORK-LIFE FIELD OFFICE, NEW LONDON (HSWL fonl)
Ernest Sullivent, Captain, MD, MPH, AMO, USPHS, Director/Senior Medical Executive and Waiver Authority
Humberto Hernandez-Aponte, Captain, MD, USPHS, Family Practice
Karen Daly, Captain, USN (Ret), Psychiatrist
Sandra Bender, Commander, MD, MPH, USPHS, Outpatient Department Chief, Family Practice, Flight Surgeon
Jodine Anderson, Commander, DDS, USPHS, Senior Dental Executive
Robert Kish, Commander, USN (Ret), OD, Optometrist
Scott Eckhart, Lieutenant Commander, DDS, CPH, Dental Officer
Christopher Janik, Lieutenant Commander, PharmD, MSED, USPHS, Regional Pharmacy Executive
Carlos Estevez, Lieutenant Commander, DPT, USPHS, Chief Physical Therapist
Charlene Criss, Lieutenant Commander, PA-C, USCG, Physician Assistant
Patrick O’Donnell, Lieutenant, MHA, USCG, Health Services Administrator
Robert Prevatt, Lieutenant Junior Grade, PA-C, USCG, Physician Assistant
Elizabeth Fitch, RN, Clinic Nurse
Daniel Polhemus, HSC, Clinic Supervisor

ALUMNI ASSOCIATION
Andrea Marcille, Captain, USCG (Ret), President
David J. Obedzinski, Vice President of Philanthropy
Emily Herbette, Director, Philanthropic Initiatives
Susan Kenyon, Director, Annual Giving & Stewardship
Trueson Tarinelli, Director, Athletic Giving
Abygale Lund, Development Officer and Operations Coordinator
Tara King-Clark, Director of Communications
Melissa Yuhas, Assistant Director, Communications
Eileen Foye-Kelly, Director of Alumni Relations
Sue Fage, Assistant Director, Alumni Relations/Alumni Center Manager
Karen Licitra, Financial & Office Manager
Michele Thompson, Database Administrator
Lolly Owens, Member Engagement Specialist